Câu hỏi:

17/01/2026 43 Lưu

Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 45°. Biết rằng khi bỏ qua sức cản của không khí, quỹ đạo chuyển động của một vật ném xiên sẽ tuân theo phương trình:

\(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \),

trong đó \(x\) là khoảng cách (tính bằng mét) vật bay được theo phương ngang, vận tốc ban đầu \({v_0}\) của vật hợp với phương ngang một góc \(\alpha \) và \(g = 9,8\) m/s2 là gia tốc trọng trường.

Để viên đạn bay qua một ngọn núi cao 4 000 mét thì khẩu pháo phải đặt cách chân núi một khoảng cách bao xa ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 45° nên ta có:

\(g = 9,8\) m/s2; \({v_0} = 500\)m/s; \(\alpha  = 45^\circ \).

Phương trình chuyển động của viên đạn là:

\(y = \left( {\frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}45^\circ }}} \right){x^2} + x\left( {\tan 45^\circ } \right) = \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x\).

Để viên đạn bay qua một ngọn núi cao 4 000 mét thì

\(y = \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x > 4\,\,000\)\( \Rightarrow \frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,000 > 0\).

Xét phương trình bậc hai \(\frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,000 = 0\) có:

\(a = \frac{{ - 9,8}}{{250\,\,000}} < 0\)

\(\Delta  = {1^2} - 4.\left( {\frac{{ - 9,8}}{{250\,\,000}}} \right).( - 4\,\,000) = \frac{{233}}{{625}} > 0\)

Do đó, phương trình bậc hai \(\frac{{ - 9,8}}{{250000}}{x^2} + x - 4000 = 0\) có hai nghiệm phân biệt là:

\({x_1}\) ≈ 20 543; \({x_2}\) ≈ 4 967.

Do đó, \(\frac{{ - 9,8}}{{250\,\,000}}{x^2} + x - 4\,\,000 > 0\) \( \Leftrightarrow \) 4 967 < \(x\) < 20 543.

Vậy khẩu pháo phải đặt cách chân núi trong khoảng từ 4 967 m đến 20 543 m (tất nhiên là phải tính đến tầm bắn của khẩu pháo nữa) thì viên đạn sẽ bay qua đỉnh núi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Bạn đó giải sai phương trình ở bước 2 do bạn chưa thử lại các giá trị \(x\) đã tìm được có thỏa mãn phương trình đã cho hay không mà đã kết luận nghiệm.

Dễ thấy, \(x =  - 2\) không thỏa mãn vì – 2 – 1 = – 3 < 0, và \(x = 5\) thỏa mãn, do đó, tập nghiệm đúng của phương trình là \(S = \left\{ 5 \right\}\).

Câu 2

A. 1 nghiệm;              
B. 2 nghiệm;                  
C. 3 nghiệm;              
D. 0 nghiệm.

Lời giải

Đáp án đúng là: D

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 5x - 9}  = \sqrt {3{x^2} - 2x + 3} \) ta được:

\(2{x^2} - 5x - 9 = 3{x^2} - 2x + 3 \Leftrightarrow {x^2} + 3x + 12 = 0 \Leftrightarrow x \in \emptyset \).

Vậy phương trình \(\sqrt {2{x^2} - 5x - 9}  = \sqrt {3{x^2} - 2x + 3} \) vô nghiệm.

Câu 3

A. \(f\left( x \right)\) luôn dương trên tập số thực; 

B. \(f\left( x \right)\) luôn âm trên tập số thực;

C. \(f\left( x \right)\) luôn không dương trên tập số thực;

D. \(f\left( x \right)\) luôn không âm trên tập số thực.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\,5} \right)\);        

B. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - 1;\, + \infty } \right)\);

C. \(f\left( x \right) > 0\) với mọi \(x \in \left( { - \infty ;\, - 1} \right) \cup \left( {5; + \infty } \right)\);                     
D. \(f\left( x \right) < 0\) với mọi \(x \in \left( { - \infty ;\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m > 1\);               
B. \( - 3 < m < 1\);        
C. \(m \le  - 3\) hoặc \(m \ge 1\);      
D. \( - 3 \le m \le 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP