Tam thức bậc hai \(f\left( x \right) = {x^2} + 2x - 5\) có tổng các hệ số là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Tam thức bậc hai \(f\left( x \right) = {x^2} + 2x - 5\) có các hệ số \(a = 1,\,\,b = 2,\,c = - 5\).
Ta có: \(a + b + c = 1 + 2 + \left( { - 5} \right) = - 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ điều kiện ta có
\({x^2} + {y^2} = \frac{{{{\left( {x + y} \right)}^2} + {{\left( {x - y} \right)}^2}}}{2} = 5 - {z^2} \Rightarrow {\left( {x + y} \right)^2} = 10 - 2{z^2} - {\left( {3 - z} \right)^2}\).
Do đó \({\left( {x + y} \right)^2} = 1 + 6z - 3{z^2}\).
Dễ thấy \(z \ne - 2\). Ta có \(P.\left( {z + 2} \right) + 2 = x + y\).
Do đó \({\left[ {P.\left( {z + 2} \right) + 2} \right]^2} = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow {\left( {z + 2} \right)^2}{P^2} + 4\left( {z + 2} \right)P + 4 = 1 + 6z - 3{z^2}\)
\( \Leftrightarrow \left( {{P^2} + 3} \right){z^2} + \left( {4{P^2} + 4P - 6} \right)z + 4{P^2} + 8P + 3 = 0\)
Phương trình ẩn \(z\) có nghiệm khi và chỉ khi \({\Delta '_z} \ge 0\)
\( \Leftrightarrow {\left( {2{P^2} + 2P - 3} \right)^2} - \left( {{P^2} + 3} \right)\left( {4{P^2} + 8P + 3} \right) \ge 0\)
\( \Leftrightarrow 4{P^4} + 4{P^2} + 9 + 8{P^3} - 12{P^2} - 12P - \left( {4{P^4} + 8{P^3} + 3{P^2} + 12{P^2} + 24P + 9} \right) \ge 0\)
\( \Leftrightarrow 23{P^2} + 36P \le 0\)
\( \Leftrightarrow - \frac{{36}}{{23}} \le P \le 0\) (áp dụng định lí về dấu của tam thức bậc hai).
Ta có \(P = 0\) khi \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\] và \(P = - \frac{{36}}{{23}}\) khi \(x = \frac{{20}}{{31}},\,\,y = - \frac{{66}}{{31}},\,\,z = \frac{7}{{31}}\).
Vậy giá trị lớn nhất của \(P\) là 0 tại \[x = 2,{\rm{ }}y = 0,{\rm{ }}z = 1\].
Câu 2
A. \[S = \left( { - \infty ;\,\, - 3} \right) \cup \left( {2;\,\, + \infty } \right)\];
B. \(S = \left[ { - 2;\,\,3} \right]\);
Lời giải
Đáp án đúng là: B
Xét tam thức bậc hai \(f\left( x \right) = {x^2} - x - 6\) có hai nghiệm là \({x_1} = - 2\), \({x_2} = 3\).
Mặt khác có hệ số \(a = 1 > 0\), do đó ta có bảng xét dấu sau:
|
\(x\) |
\( - \infty \) – 2 3 \( + \infty \) |
|
\(f\left( x \right)\) |
+ 0 – 0 + |
Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = {x^2} - x - 6 \le 0\)\( \Leftrightarrow x \in \left[ { - 2;\,\,3} \right]\).
Vậy tập nghiệm của bất phương trình đã cho là \(S = \left[ { - 2;\,\,3} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Nếu \(\Delta > 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);
B. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn trái dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\);
C. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(b\) với mọi \(x \in \mathbb{R}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
