Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {6; - 7} \right),\,\,B\left( {0;8} \right)\) và trọng tâm \(G\left( {1; - 2} \right)\). Tọa độ điểm \(C\) là
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Vì \(G\) là trọng tâm tam giác \(ABC\) nên ta có:
\(\left\{ \begin{array}{l}1 = \frac{{6 + 0 + {x_C}}}{3}\\ - 2 = \frac{{ - 7 + 8 + {y_C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = - 3\\{y_C} = - 7\end{array} \right. \Rightarrow C\left( { - 3; - 7} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
\( \Rightarrow \overrightarrow {HI} = \frac{3}{2}\overrightarrow {HG} \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).
Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).
Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)
\( \Rightarrow IM:2x - y + 1 = 0\)
\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y = - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).
Lại có: \(\overrightarrow {MA} = 3\overrightarrow {MG} \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\) .
Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).
Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
\[{\left( {\frac{x}{2} + \frac{4}{x}} \right)^4} = C_4^0.{\left( {\frac{x}{2}} \right)^4} + C_4^1.{\left( {\frac{x}{2}} \right)^3}.\left( {\frac{4}{x}} \right) + C_4^2.{\left( {\frac{x}{2}} \right)^2}.{\left( {\frac{4}{x}} \right)^2} + C_4^3.\left( {\frac{x}{2}} \right).{\left( {\frac{4}{x}} \right)^3} + C_4^4.{\left( {\frac{4}{x}} \right)^4}\]
\[ = \frac{{{x^4}}}{{16}} + 2{x^3} + 24 + \frac{{128}}{{{x^2}}} + \frac{{256}}{{{x^4}}}\].
Vậy hệ số của số hạng không chứa \[x\] trong khai triển là \[24\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.