Câu hỏi:

06/01/2026 4 Lưu

Số quy tròn của số gần đúng \(a\) trong trường hợp \(\overline a  = 13,738 \pm 0,02\) là

A. 13,738;  
B. 13,7;  
C. 13,8;   
D. 13,74.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(\overline a  = 13,738 \pm 0,02\).

Vì hàng lớn nhất của độ chính xác \(d = 0,02\) là hàng phần trăm, do đó ta làm tròn 13,738 đến hàng phần mười theo quy tắc làm tròn. Vậy số quy tròn của số gần đúng \(a\) là 13,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

\[{\left( {\frac{x}{2} + \frac{4}{x}} \right)^4} = C_4^0.{\left( {\frac{x}{2}} \right)^4} + C_4^1.{\left( {\frac{x}{2}} \right)^3}.\left( {\frac{4}{x}} \right) + C_4^2.{\left( {\frac{x}{2}} \right)^2}.{\left( {\frac{4}{x}} \right)^2} + C_4^3.\left( {\frac{x}{2}} \right).{\left( {\frac{4}{x}} \right)^3} + C_4^4.{\left( {\frac{4}{x}} \right)^4}\]

\[ = \frac{{{x^4}}}{{16}} + 2{x^3} + 24 + \frac{{128}}{{{x^2}}} + \frac{{256}}{{{x^4}}}\].

Vậy hệ số của số hạng không chứa \[x\] trong khai triển là \[24\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{60}}{{143}}\);   
B. \(\frac{{238}}{{429}}\);        
C. \(\frac{{210}}{{429}}\);  
D. \(\frac{{82}}{{143}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[5 - 10x + 40{x^2} - 80{x^3} - 80{x^4} - 32{x^5}\];
B. \[1 + 10x + 40{x^2} - 80{x^3} - 80{x^4} - 32{x^5}\];
C. \[1 - 10x + 40{x^2} - 80{x^3} + 80{x^4} - 32{x^5}\];
D. \[1 + 10x + 40{x^2} + 80{x^3} + 80{x^4} + 32{x^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP