Câu hỏi:

06/01/2026 34 Lưu

Hệ số của số hạng thứ \[3\] (từ trái sang phải) trong khai triển \[{\left( {x - 2} \right)^5}\] là

A. \[C_5^3.2\];     
B. \[ - C_5^3.2\];   
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Khai triển nhị thức ta được:

\[{\left( {x - 2} \right)^5}\]\[ = C_5^0.{x^5}.{\left( { - 2} \right)^0} + C_5^1.{x^4}.{\left( { - 2} \right)^1} + C_5^2.{x^3}.{\left( { - 2} \right)^2} + C_5^3.{x^2}.{\left( { - 2} \right)^3} + C_5^4.{x^1}.{\left( { - 2} \right)^4} + C_5^5.{x^0}.{\left( { - 2} \right)^5}\]

Hệ số hạng thứ \[3\] trong khai triển  là \[C_5^2.{\left( { - 2} \right)^2} = C_5^2{.2^2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đường thẳng \(d\) có một vectơ pháp tuyến là \(\left( {1; - 3} \right)\) nên vectơ chỉ phương là \(\left( {3;1} \right)\).

Vì \(d \bot d'\) nên \(d'\) nhận \(\left( {3;1} \right)\) làm vectơ pháp tuyến và đi qua điểm \(A\left( {0;2} \right)\) có phương trình là:

\(3\left( {x - 0} \right) + \left( {y - 2} \right) = 0 \Leftrightarrow 3x + y - 2 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Mẫu số liệu trên đã được sắp xếp theo thứ tự không giảm có \(n = 9\) (số liệu).

Do đo, trung vị của mẫu số liệu trên là 5 (giá trị ở chính giữa).

Câu 4

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP