Câu hỏi:

06/01/2026 19 Lưu

Xếp \[4\] người gồm An, Bình, Nhi, Trang ngồi vào \[6\] chỗ trên một bàn dài. Xác suất để bạn An luôn ngồi cạnh bạn Nhi bằng

A. \[\frac{2}{3}\];  
B. \[\frac{1}{4}\]; 
C. \[\frac{1}{3}\]; 
D. \[\frac{1}{6}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Số cách xếp khác nhau cho \[4\] người ngồi vào \[6\] chỗ trên một bàn dài là một chỉnh hợp chập \[4\] của \[6\] phần tử.

Suy ra \[n\left( \Omega  \right) = A_6^4 = 360\] cách.

Gọi \(A\) là biến cố để bạn An luôn ngồi cạnh bạn Nhi.

Vì An luôn ngồi cạnh bạn Nhi nên coi hai bạn này là một phần tử, trong phần tử này có \(2!\) cách xếp. Khi đó ta cần xếp \(3\) người vào \(5\) chỗ có \(A_5^3 = 60\) cách.

\( \Rightarrow n\left( A \right) = 2!.60 = 120\).

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{120}}{{360}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đường thẳng \(d\) có một vectơ pháp tuyến là \(\left( {1; - 3} \right)\) nên vectơ chỉ phương là \(\left( {3;1} \right)\).

Vì \(d \bot d'\) nên \(d'\) nhận \(\left( {3;1} \right)\) làm vectơ pháp tuyến và đi qua điểm \(A\left( {0;2} \right)\) có phương trình là:

\(3\left( {x - 0} \right) + \left( {y - 2} \right) = 0 \Leftrightarrow 3x + y - 2 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Mẫu số liệu trên đã được sắp xếp theo thứ tự không giảm có \(n = 9\) (số liệu).

Do đo, trung vị của mẫu số liệu trên là 5 (giá trị ở chính giữa).

Câu 4

A. \[M\left( {--1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\]; 
B. \[M\left( {1;\,4} \right)\] hoặc \[M\left( {1;\, - 4} \right)\];
C. \[M\left( {1;\,2} \right)\] hoặc \[M\left( {1;\, - 2} \right)\];    
D. \[M\left( {1;\,4} \right)\] hoặc \[M\left( { - 1;\,4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[C_5^3.2\];     
B. \[ - C_5^3.2\];   
C. \[C_5^2{.2^2}\];    
D. \[ - C_5^2{.2^2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP