Bác Nam dự định xây dựng một khu vườn hình chữ nhật có chiều dài 10 m, trên khu vườn đó bác Nam muốn chia thành hai phần: phần đất trồng rau dạng hình vuông có cạnh bằng chiều rộng của khu vườn, phần còn lại bác Nam làm hồ nuôi cá. Biết chi phí thi công phần đất trồng rau và hồ nuôi cá lần lượt là 60000 đồng/m2 và 135000 đồng/m2. Hỏi chiều rộng khu vườn lớn nhất có thể là bao nhiêu mét để tổng chi phí thi công không quá 5400000 đồng/m2.
Bác Nam dự định xây dựng một khu vườn hình chữ nhật có chiều dài 10 m, trên khu vườn đó bác Nam muốn chia thành hai phần: phần đất trồng rau dạng hình vuông có cạnh bằng chiều rộng của khu vườn, phần còn lại bác Nam làm hồ nuôi cá. Biết chi phí thi công phần đất trồng rau và hồ nuôi cá lần lượt là 60000 đồng/m2 và 135000 đồng/m2. Hỏi chiều rộng khu vườn lớn nhất có thể là bao nhiêu mét để tổng chi phí thi công không quá 5400000 đồng/m2.
Quảng cáo
Trả lời:
Gọi chiều rộng của khu vườn là \(x\left( {\rm{m}} \right),\left( {0 < x < 10} \right)\).
Diện tích phần trồng rau là \({x^2}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí thi công phần trồng rau là \(60{x^2}\) (nghìn đồng).
Diện tích phần làm hồ nuôi cá là \(x\left( {10 - x} \right)\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí thi công phần hồ nuôi cá là \(135x\left( {10 - x} \right)\) (nghìn đồng).
Vì tổng chi phí không vượt quá 5400000 đồng/m2 nên ta có:
\(60{x^2} + 135x\left( {10 - x} \right) \le 5400\)\( \Leftrightarrow - 75{x^2} + 1350x - 5400 \le 0\)\( \Leftrightarrow \left[ \begin{array}{l}x \le 6\\x \ge 12\end{array} \right.\).
Vì \(0 < x < 10\) nên \(0 < x \le 6\).
Vậy chiều rộng khu vườn lớn nhất là 6 m.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị ta có \(f\left( x \right) > 0\)\( \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\). Chọn A.
Lời giải
Chi phí sản xuất cho \(x\) sản phẩm là \(C\left( x \right) = x \cdot G\left( x \right) = x\left( {\frac{{20}}{x} + 100} \right) = 20 + 100x\).
Khi đó lợi nhật là \(L\left( x \right) = - 20{x^2} + 2200x - 19980 - 20 - 100x = - 20{x^2} + 2100x - 20000\).
Để lợi nhuận đạt trên 20 triệu đồng thì \(L\left( x \right) > 20000\)\( \Leftrightarrow - 20{x^2} + 2100x - 20000 > 20000\)
\( \Leftrightarrow - 20{x^2} + 2100x - 40000 > 0\)\( \Leftrightarrow 25 < x < 80\).
Vậy doanh nghiệp cần sản xuất ít nhất 26 sản phẩm.
Câu 3
A. Nếu \(\Delta < 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(b\), với mọi \(x \in \mathbb{R}\).
B. Nếu \(\Delta > 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\), với mọi \(x \in \mathbb{R}\).
C. Nếu \(\Delta = 0\) thì \(f\left( x \right)\) luôn cùng dấu với hệ số \(a\), với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Khi \(m = 1\) thì \(f\left( x \right) < 0,\forall x \in \mathbb{R}\).
b) Khi \(m > 3\) thì \(f\left( x \right)\) có hai nghiệm trái dấu.
c) Khi \(m \in \left( { - 1;2} \right)\) thì tam thức có hai nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Tam thức bậc hai \(f\left( x \right)\) có bảng xét dấu:

b) Bất phương trình \(f\left( x \right) < - 3\) có tập nghiệm là \(S = \left( { - 1;1} \right)\).
c) Phương trình \(\sqrt {f\left( x \right)} = \sqrt {{x^2} - 2x + 4} \) có 2 nghiệm phân biệt thuộc khoảng \(\left( { - 2;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

