Câu hỏi:

06/01/2026 31 Lưu

Một quả bóng được đá lên từ độ cao 1,5 mét so với mặt đất. Biết quỹ đạo của quả bóng là một đường parabol trong mặt phẳng tọa độ \(Oxy\)có phương trình \(h\left( t \right) = - 0,5{t^2} + 2,5t + 1,5\) trong đó \(t\) là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và \(h\) là độ cao (tính bằng mét) của quả bóng. Quả bóng có độ cao lớn hơn 1,5 mét so với mặt đất trong khoảng thời gian bao lâu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

5

Theo đề, ta có \(h\left( t \right) > 1,5\)\( \Leftrightarrow - 0,5{t^2} + 2,5t + 1,5 > 1,5\)\( \Leftrightarrow - 0,5{t^2} + 2,5t > 0\)\( \Leftrightarrow 0 < t < 5\).

Vậy quả bóng có độ cao lớn hơn 1,5 mét só với mặt đất trong khoảng 5 giây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lượng khách từ người thứ 11 trở lên của nhóm (\(x > 0\)).

Giá vé khi có thêm \(x\) khách là \(800000 - 10000x\) (đồng/người).

Doanh thu khi thêm \(x\) khách là \(\left( {x + 10} \right) \cdot \left( {800000 - 10000x} \right) = 10000\left( {x + 10} \right)\left( {80 - x} \right)\) (đồng).

Chi phí thực sau khi thêm \(x\)vị khách là \(600000\left( {x + 10} \right)\) (đồng).

Lợi nhuận khi thêm \(x\) vị khách là

\(T = 10000\left( {x + 10} \right)\left( {80 - x} \right) - 600000\left( {x + 10} \right)\)\( = 10000\left( {x + 10} \right)\left( {80 - x - 60} \right) = 10000\left( {x + 10} \right)\left( {20 - x} \right)\)\( = - 10000{x^2} + 100000x + 2000000\).

Công ty không bị lỗ khi \( - 10000{x^2} + 100000x + 2000000 \ge 0\)\( \Leftrightarrow - 10 \le x \le 20\).

\(x > 0\) nên \(0 < x \le 20\).

Do đó thêm nhiều nhất 20 người thì công ty không bị lỗ.

Vậy nhóm khách du lịch có nhiều nhất là 30 người.

Lời giải

\(\sqrt {2x + 3} = 3x - 6\)\( \Leftrightarrow \left\{ \begin{array}{l}3x - 6 \ge 0\\2x + 3 = {\left( {3x - 6} \right)^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\2x + 3 = 9{x^2} - 36x + 36\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\9{x^2} - 38x + 33 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 2\\\left[ \begin{array}{l}x = 3\\x = \frac{{11}}{9}\end{array} \right.\end{array} \right. \Rightarrow x = 3\).

Vậy tổng các nghiệm của phương trình là 3.

Câu 3

A. \(3\).                             
B. \(0\).                             
C. \(2\).                              
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(f\left( x \right) > 0,\forall x \in \mathbb{R}\).

Đúng
Sai

b) \(x = 0\) là một nghiệm của bất phương trình \({x^2} - 3x + 2 > 0\).

Đúng
Sai

c) \(f\left( x \right)\) là một tam thức bậc hai có hệ số \(a = 1\).

Đúng
Sai
d) Bất phương trình \(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left[ {1;2} \right]\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tam thức bậc hai \(f\left( x \right)\)\(\Delta > 0\).

Đúng
Sai

b) Tam thức bậc hai \(f\left( x \right)\) có hai nghiệm \(x = 1;x = 3\).

Đúng
Sai

c) Tam thức bậc hai \(f\left( x \right)\) có hệ số \(a > 0\).

Đúng
Sai
d) Bất phương trình \(f\left( x \right) > 0\) có ba nghiệm nguyên.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \mathbb{R}\).    
B. \(S = 0\).                       
C. \(S = \left\{ 0 \right\}\).    
D. \(S = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP