(1,5 điểm)
Cho hai biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}}\) và \(B = \frac{{x + \sqrt x - 4}}{{x - 2\sqrt x }} - \frac{1}{{\sqrt x - 2}}\) với \(x > 0;\,x \ne 4\).
1) Tính giá trị của biểu thức \(A\) khi \(x = 9\).
2) Chứng minh \(B = \frac{{\sqrt x + 2}}{{\sqrt x }}\).
3) Tìm số nguyên dương \(x\) lớn nhất để \(\frac{A}{B} < \frac{1}{2}\).
(1,5 điểm)
Cho hai biểu thức \(A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}}\) và \(B = \frac{{x + \sqrt x - 4}}{{x - 2\sqrt x }} - \frac{1}{{\sqrt x - 2}}\) với \(x > 0;\,x \ne 4\).
1) Tính giá trị của biểu thức \(A\) khi \(x = 9\).
2) Chứng minh \(B = \frac{{\sqrt x + 2}}{{\sqrt x }}\).
3) Tìm số nguyên dương \(x\) lớn nhất để \(\frac{A}{B} < \frac{1}{2}\).
Quảng cáo
Trả lời:
1) Thay \(x = 9\) (thỏa mãn điều kiện xác định) vào biểu thức \(A\), ta được: \(A = \frac{{\sqrt 9 + 2}}{{\sqrt 9 - 2}} = \frac{{3 + 2}}{{3 - 2}} = 5\).
Vậy với \(x = 9\) thì biểu thức \(A = 5\).
2) Với \(x > 0;\,x \ne 4\), ta có:
\(B = \frac{{x + \sqrt x - 4}}{{x - 2\sqrt x }} - \frac{1}{{\sqrt x - 2}} = \frac{{x + \sqrt x - 4}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x - 2} \right)}}\)
\(B = \frac{{x + \sqrt x - 4 - \sqrt x }}{{\sqrt x \left( {\sqrt x - 2} \right)}} = \frac{{x - 4}}{{\sqrt x \left( {\sqrt x - 2} \right)}} = \frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x + 2}}{{\sqrt x }}\)
Vậy \(B = \frac{{\sqrt x + 2}}{{\sqrt x }}\) (điều phải chứng minh).
3) Với \(x > 0;\,x \ne 4\), ta có: \(\frac{A}{B} = \frac{{\sqrt x + 2}}{{\sqrt x - 2}}:\frac{{\sqrt x + 2}}{{\sqrt x }} = \frac{{\sqrt x + 2}}{{\sqrt x - 2}}.\frac{{\sqrt x }}{{\sqrt x + 2}} = \frac{{\sqrt x }}{{\sqrt x - 2}}\)
Để \(\frac{A}{B} < \frac{1}{2}\) thì \(\frac{{\sqrt x }}{{\sqrt x - 2}} < \frac{1}{2}\) hay \(\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{1}{2} < 0\) hay \(\frac{{\sqrt x + 2}}{{2\left( {\sqrt x - 2} \right)}} < 0\)
Mà \[\sqrt x + 2 > 0\] với mọi \[x\], suy ra: \[2\left( {\sqrt x - 2} \right) < 0\]
\[\begin{array}{l}\sqrt x < 2\\x < 4\end{array}\]
Kết hợp điều kiện \(x > 0;\,x \ne 4\) suy ra \(0 < x < 4\), mà \(x\) là số nguyên lớn nhất, suy ra \(x = 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài quãng đường ô tô đi từ Hà Nội đến Hải Phòng là \(x\) (km, \(x > 0\)).
Thời gian ô tô đi từ Hà Nội về Hải Phòng là: \(\frac{x}{{60}}\) (giờ).
Thời gian ô tô đi từ Hải Phòng về Hà Nội là: \(\frac{x}{{40}}\) (giờ).
Vì thời gian ô tô đi từ Hà Nội đến Hải Phòng ít hơn thời gian ô tô đi từ Hải Phòng về Hà Nội là \(1\) giờ, nên ta có phương trình:
\(\frac{x}{{60}} + 1 = \frac{x}{{40}}\) hay \(\frac{{2x}}{{120}} + \frac{{120}}{{120}} = \frac{{3x}}{{120}}\)
Suy ra: \(3x = 2x + 120\), suy ra \(x = 120\) (thỏa mãn điều kiện).
Vậy độ dài quãng đường ô tô đi từ Hà Nội đến Hải Phòng là \(120\) km.
Lời giải
Dựa vào bảng tần số ghép nhóm đã cho, suy ra tần số của nhóm \(\left[ {12;16} \right)\) là bằng \(75\).
Tần số tương đối ghép nhóm của nhóm \(\left[ {12;16} \right)\) là: \(\frac{{75}}{{300}}.100\% = 25\% .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
