(1,5 điểm)
Kết quả khảo sát \[300\] học sinh lớp \[9\] về thời gian tự học của mỗi bạn trong một tuần (đơn vị; giờ) được cho trong bảng tần số ghép nhóm sau đây:
Thời gian tự học (giờ)
\(\left[ {0;4} \right)\)
\(\left[ {4;8} \right)\)
\(\left[ {8;12} \right)\)
\(\left[ {12;16} \right)\)
\(\left[ {16;20} \right)\)
Số học sinh
\(17\)
\(72\)
\(94\)
\(75\)
\(42\)
Xác định tần số và tần số tương đối ghép nhóm của nhóm \(\left[ {12;16} \right)\).
Kết quả khảo sát \[300\] học sinh lớp \[9\] về thời gian tự học của mỗi bạn trong một tuần (đơn vị; giờ) được cho trong bảng tần số ghép nhóm sau đây:
|
Thời gian tự học (giờ) |
\(\left[ {0;4} \right)\) |
\(\left[ {4;8} \right)\) |
\(\left[ {8;12} \right)\) |
\(\left[ {12;16} \right)\) |
\(\left[ {16;20} \right)\) |
|
Số học sinh |
\(17\) |
\(72\) |
\(94\) |
\(75\) |
\(42\) |
Xác định tần số và tần số tương đối ghép nhóm của nhóm \(\left[ {12;16} \right)\).
Quảng cáo
Trả lời:
Dựa vào bảng tần số ghép nhóm đã cho, suy ra tần số của nhóm \(\left[ {12;16} \right)\) là bằng \(75\).
Tần số tương đối ghép nhóm của nhóm \(\left[ {12;16} \right)\) là: \(\frac{{75}}{{300}}.100\% = 25\% .\)
Câu hỏi cùng đoạn
Câu 2:
Một hộp có \[8\] chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \[1,2,3,4,5,6,7,8;\] hai thẻ khác nhau được ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tính xác suất của biến cố \(A:\) “Số ghi trên thẻ rút được là một số chia hết cho \[3\]”.
Do \(8\) chiếc thẻ cùng loại, rút ngẫu nhiên \(1\) thẻ trong hộp nên các kết quả xảy ra là đồng khả năng.
Ta có \(8\) kết quả có thể xảy ra là: \[1,2,3,4,5,6,7,8.\]
Có \(2\) kết quả thuận lợi của biến cố \(A:\) “Số ghi trên thẻ rút được là một số chia hết cho 3” là: 3,6
Khi đó, xác suất của biến cố \(A\) là: \(\frac{2}{8} = \frac{1}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài quãng đường ô tô đi từ Hà Nội đến Hải Phòng là \(x\) (km, \(x > 0\)).
Thời gian ô tô đi từ Hà Nội về Hải Phòng là: \(\frac{x}{{60}}\) (giờ).
Thời gian ô tô đi từ Hải Phòng về Hà Nội là: \(\frac{x}{{40}}\) (giờ).
Vì thời gian ô tô đi từ Hà Nội đến Hải Phòng ít hơn thời gian ô tô đi từ Hải Phòng về Hà Nội là \(1\) giờ, nên ta có phương trình:
\(\frac{x}{{60}} + 1 = \frac{x}{{40}}\) hay \(\frac{{2x}}{{120}} + \frac{{120}}{{120}} = \frac{{3x}}{{120}}\)
Suy ra: \(3x = 2x + 120\), suy ra \(x = 120\) (thỏa mãn điều kiện).
Vậy độ dài quãng đường ô tô đi từ Hà Nội đến Hải Phòng là \(120\) km.
Lời giải
Gọi số xe mà công ty cần bổ sung là \(x\) (xe, \(x \in \mathbb{N}\)).
Lợi nhuận trung bình của mỗi xe sau khi bổ sung thêm \(x\) xe là: \(1000 - 2x\) (nghìn đồng).
Số xe của đội xe sau khi bổ sung thêm \(x\) xe là: \(35 + x\) (xe).
Tổng lợi nhuận mà đội xe thu được là: \(L\left( x \right) = \left( {35 + x} \right)\left( {1000 - x} \right)\) (nghìn đồng)
Có: \(L\left( x \right) = \left( {35 + x} \right)\left( {1000 - 20x} \right) = - 20{x^2} + 300x + 35000 = - 5{\left( {2x - 15} \right)^2} + 36125\)
Do \(x \in \mathbb{N} \Rightarrow \left\{ \begin{array}{l}2x - 15 \ne 0\\{\left( {2x - 15} \right)^2} \ge 0\end{array} \right.\) nên \({\left( {2x - 15} \right)^2} \ge 1\), suy ra \( - 5{\left( {2x - 15} \right)^2} \le - 5\)
Khi đó: \(L\left( x \right) \le 36120\)
Dấu “=” xảy ra khi \({\left( {2x - 15} \right)^2} = 1\), suy ra \(\left[ \begin{array}{l}2x - 15 = 1\\2x - 15 = - 1\end{array} \right.\) hay \(\left[ \begin{array}{l}x = 7\\x = 8\end{array} \right.\) (thỏa mãn).
Vậy công ty nên bổ sung thêm 7 xe chở hàng cùng loại để lợi nhuận trung bình mỗi ngày là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
