Viết phương trình chính tắc của hypebol \(\left( H \right)\), biết \(\left( H \right)\) đi qua các điểm \(M\left( {4;\sqrt 8 } \right)\) và \(N\left( {2\sqrt 3 ;2} \right)\)
Viết phương trình chính tắc của hypebol \(\left( H \right)\), biết \(\left( H \right)\) đi qua các điểm \(M\left( {4;\sqrt 8 } \right)\) và \(N\left( {2\sqrt 3 ;2} \right)\)
Quảng cáo
Trả lời:
Gọi \(\left( H \right):\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1,\left( {a > 0,b > 0} \right)\).
Vì \(\left( H \right)\) đi qua hai điểm \(M\left( {4;\sqrt 8 } \right)\) và \(N\left( {2\sqrt 3 ;2} \right)\) nên ta có:
\(\left\{ \begin{array}{l}\frac{{{4^2}}}{{{a^2}}} - \frac{{{{\left( {\sqrt 8 } \right)}^2}}}{{{b^2}}} = 1\\\frac{{{{\left( {2\sqrt 3 } \right)}^2}}}{{{a^2}}} - \frac{{{2^2}}}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{{a^2}}} = \frac{1}{8}\\\frac{1}{{{b^2}}} = \frac{1}{8}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a^2} = 8\\{b^2} = 8\end{array} \right.\). Vậy \(\frac{{{x^2}}}{8} - \frac{{{y^2}}}{8} = 1\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \({F_1}\left( {3;0} \right),{F_2}\left( {0; - 3} \right)\).
B. \({F_1}\left( {\sqrt 8 ;0} \right),{F_2}\left( {0; - \sqrt 8 } \right)\).
Lời giải
\({F_1}\left( { - \sqrt 8 ;0} \right),{F_2}\left( {\sqrt 8 ;0} \right)\) là các tiêu điểm của elip. Chọn D.
Lời giải
Theo đề ta có hệ \(\left\{ \begin{array}{l}{a^2} - \frac{{{b^2}}}{9} = 1\\{a^2} + {b^2} = 11\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 2\\{b^2} = 9\end{array} \right.\). Suy ra \(b = 3\) vì \(b > 0\).
Trả lời: 3.
Câu 3
a) Có \({a^2} = 25;{b^2} = 9\).
b) Elip có hai tiêu điểm là \({F_1}\left( { - 3;0} \right);{F_2}\left( {3;0} \right)\).
c) Elip cắt trục hoành tại hai điểm có tọa độ là \({A_1}\left( { - 6;0} \right);{A_2}\left( {6;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Có \(a = 2;b = 3\).
b) Hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {13} ;0} \right),{F_2}\left( {\sqrt {13} ;0} \right)\).
c) Điểm \(M\left( {5;{y_M}} \right)\) với \({y_M} > 0\) nằm trên hypebol có tung độ \({y_M} = \frac{{2\sqrt {21} }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Tọa độ một tiêu điểm của elip \(\left( E \right)\) là \(\left( {5;0} \right)\).
b) Elip \(\left( E \right)\) đi qua điểm \(A\left( {13; - 12} \right)\).
c) Elip \(\left( E \right)\) có tiêu cự bằng 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.