Câu hỏi:

09/01/2026 16 Lưu

Trong mặt phẳng với hệ trục tọa độ \(Oxy\). Cho đường thẳng \(\Delta \) đi qua \(M\left( { - 1;2} \right)\) và vuông góc với đường thẳng \(d\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 2t\\y = 1 - 3t\end{array} \right.\). Đường thẳng \(\Delta \) cắt trục \(Ox,Oy\) lần lượt tại \(A\) và \(B\). Khi đó \({S_{\Delta OAB}}\) bằng bao nhiêu? (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

5,33

Vì đường thẳng \(\Delta \) đi qua \(M\left( { - 1;2} \right)\) và vuông góc với đường thẳng \(d\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 2t\\y = 1 - 3t\end{array} \right.\) nên \(\Delta \) có dạng \(2\left( {x + 1} \right) - 3\left( {y - 2} \right) = 0\) hay \(2x - 3y + 8 = 0\).

Vì \(\Delta \) cắt trục \(Ox,Oy\) lần lượt tại \(A\) và \(B\) nên \(A\left( { - 4;0} \right);B\left( {0;\frac{8}{3}} \right)\).

Khi đó \({S_{\Delta OAB}} = \frac{1}{2} \cdot OA \cdot OB = \frac{1}{2} \cdot 4 \cdot \frac{8}{3} = \frac{{16}}{3} \approx 5,33\).

Trả lời: 5,33.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Câu 2

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Câu 4

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 25\). 

B. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\).                 

C. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 20\).
D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP