Câu hỏi:

09/01/2026 14 Lưu

Góc giữa hai đường thẳng \({\Delta _1}:x + y - 10 = 0\) và \({\Delta _2}:2x + 2025 = 0\) bằng

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \({\Delta _1};{\Delta _2}\) lần lượt có vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {1;1} \right),\overrightarrow {{n_2}}  = \left( {2;0} \right)\).

Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{n_1}}  \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {1 \cdot 2 + 1 \cdot 0} \right|}}{{\sqrt {{1^2} + {1^2}}  \cdot \sqrt {{2^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2}\)\( \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = 45^\circ \). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Câu 2

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP