Câu hỏi:

09/01/2026 13 Lưu

Cho parabol \({y^2} = 2px\) với \(p > 0\) như hình vẽ, trong đó đường thẳng \(d\) là đường chuẩn. Tìm hoành độ điểm \(M\) nếu \(2M{H^2} + 3MF = 44\).

Ảnh có chứa hàng, biểu đồ, Sơ đồ

Nội dung do AI tạo ra có thể không chính xác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3

Theo đề ta có phương trình đường chuẩn \(d\) là \(x =  - 1 \Rightarrow p = 2\).

Do đó \(\left( P \right):{y^2} = 4x\).

Vì \(M \in \left( P \right) \Rightarrow MF = d\left( {M,d} \right) = MH\).

Do đó \(2M{H^2} + 3MF = 44\)\[ \Leftrightarrow 2M{H^2} + 3MH = 44\]\[ \Leftrightarrow MH = 4\] vì \(MH > 0\).

Giả sử \(M\left( {{x_0};{y_0}} \right)\) nên \(MH = d\left( {M,d} \right) = \left| {{x_0} + 1} \right| = {x_0} + 1\) (vì \({x_0} > 0\)).

Do đó \({x_0} + 1 = 4 \Rightarrow {x_0} = 3\).

Vậy hoành độ của điểm \(M\) là 3.

Trả lời: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).

Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne  - 35\).

Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c =  - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\).

Vì \(c \ne  - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).

Suy ra \(b =  - 4;c = 15\). Vậy \(b + c = 11\).

Trả lời: 11.

Câu 3

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 25\). 

B. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\).                 

C. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 20\).
D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP