Câu hỏi:

09/01/2026 13 Lưu

Cho hình elip \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) như hình vẽ bên. Đường thẳng \(d\) song song với trục hoành và cách trục hoành một khoảng bằng 2, \(d\) tạo với elip một dây cung có độ dài bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

7,45

Dựa vào hình vẽ ta thấy elip đi qua 2 điểm \(\left( {5;0} \right);\left( {0;3} \right)\) nên ta có hệ \(\left\{ \begin{array}{l}\frac{{25}}{{{a^2}}} = 1\\\frac{9}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 25\\{b^2} = 9\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\).

Đường thẳng \(d\) song song với trục hoành và cách trục hoành một khoảng bằng 2 có phương trình là \(y = 2\) hoặc \(y =  - 2\).

Xét trường hợp \(y = 2\) (tương tự \(y =  - 2\)).

Tọa độ giao điểm của elip với đường thẳng \(y = 2\)là nghiệm của hệ

\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\\y = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  \pm \frac{{5\sqrt 5 }}{3}\\y = 2\end{array} \right.\)\( \Rightarrow {M_1}\left( {\frac{{5\sqrt 5 }}{3};2} \right);{M_2}\left( { - \frac{{5\sqrt 5 }}{3};2} \right)\).

Ta có \(OM_2^2 = {\left( {\frac{{ - 5\sqrt 5 }}{3}} \right)^2} + {2^2}\).

Ta có \({M_1}{M_2} = 2I{M_2} = 2\sqrt {OM_2^2 - I{O^2}}  = 2\sqrt {{{\left( {\frac{{ - 5\sqrt 5 }}{3}} \right)}^2} + {2^2} - {2^2}}  = \frac{{10\sqrt 5 }}{3} \approx 7,45\).

Trả lời: 7,45.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 1} \right)\) và \(R = 5\).

Vì tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) song song với đường thẳng \(\Delta \) có dạng \(3x - 4y + c = 0,c \ne  - 35\).

Lại có \(d\left( {I,d} \right) = R\)\( \Leftrightarrow \frac{{\left| {3 \cdot 2 - 4 \cdot \left( { - 1} \right) + c} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = 5\)\( \Leftrightarrow \left| {10 + c} \right| = 25\)\( \Leftrightarrow \left[ \begin{array}{l}10 + c = 25\\10 + c =  - 25\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\).

Vì \(c \ne  - 35\) nên \(c = 15\). Do đó \(d:3x - 4y + 15 = 0\).

Suy ra \(b =  - 4;c = 15\). Vậy \(b + c = 11\).

Trả lời: 11.

Câu 3

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 25\). 

B. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\).                 

C. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 20\).
D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

Đúng
Sai

b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).

Đúng
Sai

c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).

Đúng
Sai
d) Có hai tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP