Câu hỏi:

09/01/2026 15 Lưu

Trong mặt phẳng \(Oxy\), cho đường thẳng \(d\) qua \(O\). Biết \(A\left( {10;2} \right),B\left( { - 10;8} \right)\) nằm cùng phía đối với đường thẳng \(d\). \(d\left( {A,d} \right) + d\left( {B,d} \right)\) lớn nhất bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

10

Đường thẳng \(d\) đi qua \(O\) có dạng \(ax + by = 0\left( {{a^2} + {b^2} > 0} \right)\).

Ta có \(d\left( {A,d} \right) = \frac{{\left| {10a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\); \(d\left( {B,d} \right) = \frac{{\left| { - 10a + 8b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Do đó \(d\left( {A,d} \right) + d\left( {B,d} \right)\)\[ = \frac{{\left| {10a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} + \frac{{\left| { - 10a + 8b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {10a + 2b} \right| + \left| { - 10a + 8b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\].

Do \(A,B\) nằm cùng phía với đường thẳng \(d\) nên \[10a + 2b\]và \[ - 10a + 8b\] phải cùng dấu.

Do đó \[\left| {10a + 2b} \right| + \left| { - 10a + 8b} \right| = \left| {10a + 2b + \left( { - 10a} \right) + 8b} \right| = \left| {10b} \right|\].

Do đó \(d\left( {A,d} \right) + d\left( {B,d} \right) = \frac{{\left| {10b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Đặt \(a = kb,b \ne 0\). Khi đó \(d\left( {A,d} \right) + d\left( {B,d} \right) = \frac{{\left| {10b} \right|}}{{\sqrt {{k^2}{b^2} + {b^2}} }} = \frac{{10\left| b \right|}}{{\left| b \right|\sqrt {{k^2} + 1} }} = \frac{{10}}{{\sqrt {{k^2} + 1} }}\).

Để \(\frac{{10}}{{\sqrt {{k^2} + 1} }}\) lớn nhất thì \(\sqrt {{k^2} + 1} \) nhỏ nhất khi \(k = 0\)\( \Rightarrow a = 0\).

Khi đó đường thẳng \(d\) là trục hoành \(y = 0\).

Vậy \(d\left( {A,d} \right) + d\left( {B,d} \right)\) lớn nhất là 10.

Trả lời: 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x + 2y - 3 = 0\).          
B. \(x - 2y + 5 = 0\).          
C. \(x + 2y = 0\).               
D. \(x + 2y - 5 = 0\).

Lời giải

 

     

Lời giải

Đường thẳng \(d\) vuông góc với đường thẳng \(\Delta \) có dạng \(x + 2y + c = 0\).

Vì \(d\) đi qua điểm \(A\left( {1;2} \right)\) nên \(1 + 2 \cdot 2 + c = 0 \Rightarrow c =  - 5\).

Vậy \(d:x + 2y - 5 = 0\). Chọn D.

Câu 2

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

Đúng
Sai

b) Khoảng cách từ \(O\) đến đường thẳng \(d\) bằng \(2\sqrt 2 \).

Đúng
Sai

c) Đường thẳng \(d\) tạo với hệ trục một tam giác có diện tích bằng 4.

Đúng
Sai
d) Góc giữa \(d\) và trục \(Ox\) bằng \(45^\circ \).
Đúng
Sai

Lời giải

a) Một vectơ pháp tuyến của đường thẳng \(d\) là \(\overrightarrow n  = \left( {1; - 1} \right)\).

b) Ta có \(d\left( {O,d} \right) = \frac{{\left| 2 \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \).

c) Đường thẳng \(d\) cắt trục \(Ox,Oy\) lần lượt tại \(A\left( { - 2;0} \right),B\left( {0;2} \right)\).

Khi đó \({S_{\Delta AOB}} = \frac{1}{2} \cdot 2 \cdot 2 = 2\).

d) Đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1; - 1} \right)\) và trục \(Ox\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {0;1} \right)\).

Khi đó \(\cos \left( {d,Ox} \right) = \frac{{\left| {1 \cdot 0 + \left( { - 1} \right) \cdot 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}}  \cdot \sqrt {{0^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {d,Ox} \right) = 45^\circ \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Đúng.

Câu 4

A. \(135^\circ \).               
B. \(90^\circ \).                 
C. \(45^\circ \).                 
D. \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;1} \right)\).   
B. \(\left( {1;2} \right)\).   
C. \(\left( {1;0} \right)\).   
D. \(\left( {0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(8\).                              
B. \(4\).                              
C. \(2\).                              
D. \(16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP