Câu hỏi:

09/01/2026 7 Lưu

Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(\left( O \right),\) hai đường cao \(BE\)và \(CF\)cắt nhau tại \(H.\) Gọi \(I\) là trung điểm của cạnh \(BC.\)

a) Chứng minh tứ giác \(BCEF\) nội tiếp.

b) Qua điểm \(I\) vẽ đường thẳng vuông góc với \(IH\) cắt các đường thẳng \(AB,\)\(AC\) và \(AH\)lần lượt tại các điểm \(M,\,\,N\)và \(Q.\) Chứng minh \(AH = 2OI\) và \(Q\) là trung điểm của \(MN.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
                                                                          Media VietJack
a) Ta có: \[BE \bot AC\] nên \[\widehat {BEC} = {90^o}\]

Suy ra 3 điểm \[B,E,C\] cùng nằm trên đường tròn đường kính BC (1).

Ta có: \[CF \bot AB\] nên \[\widehat {BFC} = 90^\circ .\]

Suy ra 3 điểm \[B,F,C\] cùng nằm trên đường tròn đường kính BC (2).

Từ (1) và (2) suy ra tứ giác \[BCEF\] nội tiếp.

b) Kẻ đường kính \[AP\] của đường tròn \[\left( O \right)\]. Khi đó \[PC \bot AC\] nên \[PC\]//\[BH\](cùng vuông góc với \[AC\]) và \[PB \bot AB\] nên \[PB\]//\[CH\](cùng vuông góc với \[AB\]). Do đó \[BHCP\] là hình bình hành.

Suy ra trung điểm \[I\]của \[BC\] cũng là trung điểm của \[PH\]. Vì vậy \[OI\] là đường trung bình của tam giác \[PAH\] nên \[OI = \frac{{AH}}{2}\] hay \[AH = 2OI\].

Kẻ đường thẳng qua \[H\], vuông góc với \[IH\]cắt các đường thẳng \[AB,AC\] lần lượt tại \[X,Y\].

Vì \[\widehat {PBX} = \widehat {PHX} = {90^o}\] nên các điểm \[P,B,X,H\] nằm trên đường tròn đường kính \[PX\], suy ra \[\widehat {PXH} = \widehat {PBH}\]. Tương tự \[\widehat {PCY} = \widehat {PHY} = {90^o}\] nên các điểm \[P,C,Y,H\] nằm trên đường tròn đường kính \[PY\], suy ra \[\widehat {PYH} = \widehat {PCH}\]

Mà \[BHCP\] là hình bình hành nên \[\widehat {PBH} = \widehat {PCH}\], suy ra \[\widehat {PXH} = \widehat {PYH}\] hay tam giác \[PXY\] cân tại \[P\], đường cao \[PH\] nên \[H\] là trung điểm của \[XY\].

Vì \[XY\]//\[MN\] nên ta có \[\frac{{XH}}{{MQ}} = \frac{{AH}}{{AQ}} = \frac{{HY}}{{QN}}\]. Suy ra \[MQ = QN\] hay \[Q\] là trung điểm của \[MN\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \[x \ge 0;x \ne 9\], ta có

\[A = \left( {\frac{{\sqrt x }}{{\sqrt x  + 3}} + \frac{3}{{\sqrt x  - 3}}} \right).\frac{{\sqrt x  + 3}}{{x + 9}}\]

\[ = \frac{{x + 9}}{{\left( {\sqrt x  + 3} \right)\left( {\sqrt x  - 3} \right)}}.\frac{{\sqrt x  + 3}}{{x + 9}} = \frac{1}{{\sqrt x  - 3}}\]

Lời giải

Theo định lí Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = 6\\{x_1}.{x_2} = 4\end{array} \right.\]

\[T = {\left( {{x_1} + 2} \right)^2} + {\left( {{x_2} + 2} \right)^2} = {x_1}^2 + {x_2}^2 + 4\left( {{x_1} + {x_2}} \right) + 8\]

\[ = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + 4\left( {{x_1} + {x_2}} \right) + 8 = {6^2} - 2.4 + 4.6 + 8 = 60\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[5\].                             
B. \[ - 2\].                      
C. \[2\].                                  
D. \[ - 4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP