Câu hỏi:

18/01/2026 23 Lưu

Từ các chữ số \(1;2;3;4;5;6\) có thể lập được bao nhiêu chữ số tự nhiên bé hơn 100?

A. \(36\).                            
B. \(62\).                            
C. \(54\).                            
D. \(42\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

TH1: Số lập được có 1 chữ số.

Có 6 số lập được trong trường hợp này.

TH2: Số lập được có hai chữ số.

Giả sử số cần lập là \(\overline {ab} \).

Có 6 cách chọn \(a\), có 6 cách chọn \(b\).

Vậy trong trường hợp này có \(6 \cdot 6 = 36\) số.

Vậy có tất cả \(6 + 36 = 42\) số tự nhiên lập được từ các chữ số trên bé hơn 100. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số cần lập có dạng \(\overline {abcde} \).

TH1: \(e = 0\). Có 1 cách chọn \(e\).

Khi đó \(a,b,c,d\) có \(A_9^4\) cách chọn.

Vậy trong trường hợp này lập được \(A_9^4 = 3024\) số.

TH2: \(e \in \left\{ {2;4;6;8} \right\}\). Có \(4\) cách chọn \(e\).

Có 8 cách chọn \(a\).

Chọn các số \(b,c,d\) trong các số còn lại nhất định phải có chữ số 0 nên có \(3 \cdot A_7^2\) cách chọn.

Vậy trong trường hợp này lập được \(4 \cdot 8 \cdot 3 \cdot A_7^2 = 4032\) số.

Do đó có tất cả \(3024 + 4032 = 7056\) số.

Trả lời: 7056.

Lời giải

\({\left( {2x - y} \right)^5} = {\left( {2x} \right)^5} + 5 \cdot {\left( {2x} \right)^4} \cdot \left( { - y} \right) + 10 \cdot {\left( {2x} \right)^3} \cdot {\left( { - y} \right)^2} + 10 \cdot {\left( {2x} \right)^2} \cdot {\left( { - y} \right)^3} + 5 \cdot \left( {2x} \right) \cdot {\left( { - y} \right)^4} + {\left( { - y} \right)^5}\)

\( = 32{x^5} - 80{x^4}y + 80{x^3}{y^2} - 40{x^2}{y^3} + 10x{y^4} - {y^5}\).

Tổng các hệ số của khai triển là \(32 - 80 + 80 - 40 + 10 - 1 = 1\).

Trả lời: 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{27}}{{128}}\).  
B. \(\frac{9}{{32}}\).         
C. \(\frac{{27}}{{32}}\).    
D. \(\frac{{27}}{{64}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Khai triển đã cho có \(n + 1\) số hạng.

Đúng
Sai

b) Khai triển luôn có số hạng tự do bằng 1.

Đúng
Sai

c) Hệ số của số hạng chứa \({x^3}\) trong khai triển trên bằng \(C_n^3\).

Đúng
Sai
d) Nếu \(n\) là số nguyên dương thỏa mãn thỏa mãn \(C_n^0 + 4C_n^1 + {4^2}C_n^2 + ... + {4^n}C_n^n = 15625\) thì \(n = 6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 810\).                       
B. \(826\).                          
C. \(810\).                          
D. \(421\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Nếu \(a = 1\) thì lập được 240 số.

Đúng
Sai

b) Nếu \(a = 2\) và \(b \in \left\{ {0;4} \right\}\)thì lập được 45 số cần lập.

Đúng
Sai

c) Nếu \(a = 2\) và \(b \in \left\{ {1;5} \right\}\) thì lập được 70 số cần lập.

Đúng
Sai
d) Có tất cả 360 số cần lập.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP