Câu hỏi:

19/01/2026 4 Lưu

Có 20 tấm thẻ được đánh số từ 1 đến 20 (mỗi thẻ đánh một số). Các tấm thẻ có kích thước và khối lượng như nhau. Chọn ngẫu nhiên ra 8 tấm thẻ, tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 10.

A. \(\frac{{560}}{{4199}}\).

B. \(\frac{{500}}{{4199}}\).

C. \(\frac{{1700}}{{8398}}\).

D. \(\frac{{1500}}{{8398}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{20}^8 = 125970\).

Từ 1 đến 20 có 10 số lẻ và 10 số chẵn trong đó có 2 số chia hết cho 10.

Gọi \(A\) là biến cố “Có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 10”. Suy ra \(n\left( A \right) = C_{10}^3 \cdot 2 \cdot C_8^4 = 16800\).

Do đó \(P\left( A \right) = \frac{{16800}}{{125970}} = \frac{{560}}{{4199}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Khoảng biến thiên của mẫu số liệu trên là 20.

Đúng
Sai

B. Khoảng tứ phân vị của mẫu số liệu là 5.

Đúng
Sai

C. Phương sai của mẫu số liệu là \(38,67\) (làm tròn kết quả đến hàng phần trăm).

Đúng
Sai

D. 21 là giá trị bất thường của mẫu số liệu.

Đúng
Sai

Lời giải

a) Khoảng biến thiên \(R = 21 - 1 = 20\).

b) Mẫu số liệu đã được sắp theo thứ tự không giảm.

Mẫu số liệu có 6 giá trị. Khi đó \({Q_1} = 11;{Q_3} = 17\). Khi đó \({\Delta _Q} = 17 - 11 = 6\).

c) Giá trị trung bình \(\overline x = \frac{{1 + 11 + 13 + 15 + 17 + 21}}{6} = 13\).

Phương sai \({s^2} = \frac{{{{\left( {1 - 13} \right)}^2} + {{\left( {11 - 13} \right)}^2} + {{\left( {13 - 13} \right)}^2} + {{\left( {15 - 13} \right)}^2} + {{\left( {17 - 13} \right)}^2} + {{\left( {21 - 13} \right)}^2}}}{6} \approx 38,67\).

d) Có \({Q_1} - 1,5{\Delta _Q} = 2;{Q_3} + 1,5{\Delta _Q} = 26\).

Do đó 1 là giá trị bất thường của mẫu số liệu.

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.

Lời giải

Giá trị trung bình của mẫu số liệu là \(\overline x = \frac{{3 + 4 + 6 + 9 + 13}}{5} = 7\).

Phương sai: \[{s^2} = \frac{{{{\left( {3 - 7} \right)}^2} + {{\left( {4 - 7} \right)}^2} + {{\left( {6 - 7} \right)}^2} + {{\left( {9 - 7} \right)}^2} + {{\left( {13 - 7} \right)}^2}}}{5} = \frac{{66}}{5}\].

Độ lệch chuẩn \(s = \sqrt {\frac{{66}}{5}} \approx 3,63\).

Trả lời: 3,63.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP