Câu hỏi:

19/01/2026 44 Lưu

Trong một hộp có 30 chiếc thẻ cùng loại được viết các số \(1;2;3;...;30\) sao cho mỗi thẻ chỉ viết một số và hai thẻ khách nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 thẻ trong hộp. Xác suất để hai thẻ được chọn có tích của hai số được viết trên đó là số chia hết cho 3 (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,56

Số phần tử không gian mẫu là \(n\left( \Omega \right) = C_{30}^2 = 435\).

Từ 1 đến 30 có 10 số chia hết cho 3.

Gọi \(A\) là biến cố “2 thẻ được chọn có tích của hai số được viết trên đó là số chia hết cho 3”.

Để tích hai số chia hết cho 3 thì ít nhất 1 trong hai số lấy ra phải chia hết cho 3.

TH1: Chọn được 2 số đều chia hết cho 3 có \(C_{10}^2 = 45\) cách.

TH2: Chọn được 1 số chia hết cho 3 và 1 số không chia hết cho 3 có \(C_{10}^1 \cdot C_{20}^1 = 200\) cách.

Suy ra \(n\left( A \right) = 45 + 200 = 245\).

Do đó \(P\left( A \right) = \frac{{245}}{{435}} \approx 0,56\).

Trả lời: 0,56.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{20}^8 = 125970\).

Từ 1 đến 20 có 10 số lẻ và 10 số chẵn trong đó có 2 số chia hết cho 10.

Gọi \(A\) là biến cố “Có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ mang số chia hết cho 10”. Suy ra \(n\left( A \right) = C_{10}^3 \cdot 2 \cdot C_8^4 = 16800\).

Do đó \(P\left( A \right) = \frac{{16800}}{{125970}} = \frac{{560}}{{4199}}\). Chọn A.

Lời giải

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {6^3} = 216\).

Gọi \(A\) là biến cố “Ba lần gieo có ít nhất một lần xuất hiện mặt 2 chấm”.

Xét \(\overline A \) là biến cố “Ba lần gieo không xuất hiện mặt 2 chấm”.

Khi đó \(n\left( {\overline A } \right) = {5^3} = 125\).

Suy ra \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\). Suy ra \(a = 91;b = 216 \Rightarrow b - a = 125\).

Trả lời: 125.

Câu 3

A. Số phần tử của không gian mẫu là 220.

Đúng
Sai

B. Số phần tử của biến cố \(A\) “Ba viên bi chọn được đều là bi đỏ” là 15.

Đúng
Sai

C. Xác suất của biến cố \(A\) “Ba viên bi chọn được đều là bi đỏ” là \(\frac{7}{{44}}\).

Đúng
Sai

D. Xác suất của biến cố “Ba viên bi chọn được có ít nhất một viên bi màu xanh” là \(\frac{7}{{22}}\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{52}^2\).

Đúng
Sai

B. Số phần tử của biến cố \(A\) là \(n\left( A \right) = 78\).

Đúng
Sai

C. Xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{13}}{{102}}\).

Đúng
Sai

D. Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{1}{{17}}\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP