Câu hỏi:

19/01/2026 8 Lưu

Một hộp chứa 7 quả cầu màu xanh và 5 quả cầu màu đỏ. Chọn ngẫu nhiên từ hộp 4 quả cầu. Xác suất để chọn được không quá 2 quả cầu màu đỏ là \(\frac{a}{b}\)(\(\frac{a}{b}\) là phân số tối giản). Tính \(a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

61

Số phần tử của không gian mẫu là \(C_{12}^4 = 495\).

Gọi \(A\) là biến cố “4 quả được chọn có không quá 2 quả cầu màu đỏ”.

TH1: Chọn được 4 quả màu xanh có \(C_7^4 = 35\) cách.

TH2: Chọn được 3 quả màu xanh và 1 quả màu đỏ có \(C_7^3 \cdot C_5^1 = 175\) cách.

TH3: Chọn được 2 quả màu xanh và 2 quả màu đỏ có \(C_7^2 \cdot C_5^2 = 210\) cách.

Suy ra \(n\left( A \right) = 35 + 175 + 210 = 420\).

Vậy \(P\left( A \right) = \frac{{420}}{{495}} = \frac{{28}}{{33}}\). Suy ra \(a = 28;b = 33 \Rightarrow a + b = 61\).

Trả lời: 61.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Khoảng biến thiên của mẫu số liệu trên là 20.

Đúng
Sai

B. Khoảng tứ phân vị của mẫu số liệu là 5.

Đúng
Sai

C. Phương sai của mẫu số liệu là \(38,67\) (làm tròn kết quả đến hàng phần trăm).

Đúng
Sai

D. 21 là giá trị bất thường của mẫu số liệu.

Đúng
Sai

Lời giải

a) Khoảng biến thiên \(R = 21 - 1 = 20\).

b) Mẫu số liệu đã được sắp theo thứ tự không giảm.

Mẫu số liệu có 6 giá trị. Khi đó \({Q_1} = 11;{Q_3} = 17\). Khi đó \({\Delta _Q} = 17 - 11 = 6\).

c) Giá trị trung bình \(\overline x = \frac{{1 + 11 + 13 + 15 + 17 + 21}}{6} = 13\).

Phương sai \({s^2} = \frac{{{{\left( {1 - 13} \right)}^2} + {{\left( {11 - 13} \right)}^2} + {{\left( {13 - 13} \right)}^2} + {{\left( {15 - 13} \right)}^2} + {{\left( {17 - 13} \right)}^2} + {{\left( {21 - 13} \right)}^2}}}{6} \approx 38,67\).

d) Có \({Q_1} - 1,5{\Delta _Q} = 2;{Q_3} + 1,5{\Delta _Q} = 26\).

Do đó 1 là giá trị bất thường của mẫu số liệu.

Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.

Lời giải

Giá trị trung bình của mẫu số liệu là \(\overline x = \frac{{3 + 4 + 6 + 9 + 13}}{5} = 7\).

Phương sai: \[{s^2} = \frac{{{{\left( {3 - 7} \right)}^2} + {{\left( {4 - 7} \right)}^2} + {{\left( {6 - 7} \right)}^2} + {{\left( {9 - 7} \right)}^2} + {{\left( {13 - 7} \right)}^2}}}{5} = \frac{{66}}{5}\].

Độ lệch chuẩn \(s = \sqrt {\frac{{66}}{5}} \approx 3,63\).

Trả lời: 3,63.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(n\left( \Omega \right) = 6\).

Đúng
Sai

B. Xác suất để thu được mặt có số chấm chia hết cho 2 là \(\frac{1}{2}\).

Đúng
Sai

C. Xác suất để thu được mặt có số chấm nhỏ hơn 4 là \(\frac{1}{2}\).

Đúng
Sai

D. Xác suất để thu được mặt có số chấm lớn hơn 4 là \(\frac{1}{2}\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP