Cho cân tại \(A\) có \(AB = 5{\rm{ cm}}\). Khi đó:
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(\Delta ABC\) cân tại \(A\) nên \(AB = AC = 5{\rm{ cm}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét \(\Delta ABE\) có \(\widehat A + \widehat B + \widehat {AEB} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {AEB}\) (1)
Xét \(\Delta CED\) có \(\widehat C + \widehat D + \widehat {CED} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \widehat D - \widehat {CED}\) (2)
Mà \(\widehat {AEB} = \widehat {CED}\) (Hai góc đối đỉnh) (3)
Từ (1), (2) và (3) suy ra \(\widehat B = \widehat C\).
Xét \(\Delta ABE\) và \(\Delta DCE\) có:
\(\widehat {BAC} = \widehat {BDC} = 90^\circ \)
\(AB = CD\)
\(\widehat B = \widehat C\)
Do đó, \(\Delta ABE = \Delta DCE\) (g.c.g)
Suy ra \(AE = DE\) (hai cạnh tương ứng)
Mà \(ED = 4{\rm{ cm}}\) nên \(EA = 4{\rm{ cm}}\).
Khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(EA\) (Vì \(AE \bot AB\) tại \(A\))
Vậy khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(4{\rm{ cm}}{\rm{.}}\)
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \(\Delta PQR = \Delta MNI\) thì \(QR = NI\) (hai cạnh tương ứng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.