Một đồ lưu niệm bằng thủy tinh có chiều cao bằng \(14\,(cm)\), được thiết kế gồm hai phần, phần dưới là một khối lập phương cạnh bằng \(8\,(cm)\) và phần trên là một phần của khối cầu có đường kính bằng \(8\,(cm)\) (được mô hình hóa bởi hình vẽ bên cạnh).
Quảng cáo
Trả lời:
a) Đúng
Thể tích của khối lập phương cạnh \(8\,(cm)\) bằng \(512\,(c{m^3})\).
b) Sai
Phần chỏm cầu có chiều cao bằng \(14 - 8 = 6\,(cm)\)

Mặt trên của hình lập phương cắt mặt cầu theo giao tuyến là đường tròn có bán kính bằng \(\sqrt {{4^2} - {{(6 - 4)}^2}} = 2\sqrt 3 \,(cm)\)
c) Sai
Ta tìm thể tích phần chỏm cầu phía dưới
Theo trên thì chỏm cầu phía dưới có chiều cao \(h' = 2\,(cm);\,r = 2\sqrt 3 \,(cm)\)
Vậy thể tích phần chỏm cầu phía dưới bằng \(V' = \pi {h^2}\left( {R - \frac{h}{3}} \right) = \pi {.2^2}\left( {4 - \frac{2}{3}} \right) = \frac{{40\pi }}{3}\,(c{m^3})\).
Ta có thể tích của khối cầu \(\frac{4}{3}\pi {.4^3} = \frac{{256\pi }}{3}\,(c{m^3})\).
Nên thể tích phần chỏm cầu phía trên bằng \(\frac{{256\pi }}{3} - \frac{{40\pi }}{3} = 72\pi \,(c{m^3})\).
d) Đúng
Thể tích của đồ lưu niệm đó là \(512\, + 72\pi \approx 738\,(c{m^3})\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 209.
Gọi \(x\left( {\rm{m}} \right)\)\(\left( {x > 0} \right)\) là chiều rộng đáy. Khi đó chiều dài đáy là \(1,5x\left( {\rm{m}} \right)\)
Gọi \(h\left( {\rm{m}} \right)\) là chiều cao của thùng.
Theo đề bài, thể tích của thùng \(1{{\rm{m}}^{\rm{3}}}\) nên ta có: \(1,5x \times x \times h = 1 \Leftrightarrow h = \frac{1}{{1,5{x^2}}} = \frac{2}{{3{x^2}}}\).
Diện tích các mặt bên của thùng là: \({S_{ben}} = 2.1,5x.h + 2xh = 5xh = \frac{{10}}{{3x}}\)
Diện tích các mặt đáy thùng là: \({S_{day}} = 1,5{x^2}\)
Chi phí làm mặt bên là: \({C_{ben}} = 180000.\frac{{10}}{{3x}} = \frac{{600000}}{x}\)
Chi phí làm mặt đáy là: \({C_{day}} = 240000.1,5{x^2} = 360000{x^2}\).
Chi phí để sản xuất 1 thùng là: \(C\left( x \right) = 360000{x^2} + \frac{{600000}}{x}\).
Ta có \(C'\left( x \right) = 720000x - \frac{{600000}}{{{x^2}}}\).
\(C'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{5}{6}}}\).

Khi đó chi phí thấp nhất để sản xuất một thùng là \({C_{\min }} \approx 956392,713\) (đồng).
Số thùng sản xuất tối đa là: \(n = \frac{{200000000}}{{956393,713}} \approx 209,119\)(thùng).
Vậy số thùng tối đa có thể sản xuất là \(209\) thùng.
Lời giải
Đáp án: 37.

Gọi \(I\) là tâm của mặt cầu, \(M\) là giao điểm của đường tròn trên mặt đất với trục \(Oy.\) Khi đó
\(I{M^2} = {(IM - 30)^2} + {450^2} \Leftrightarrow IM = \frac{{{{30}^2} + {{450}^2}}}{{2.30}} = 3390{\rm{ km}}{\rm{.}}\)
Tọa độ tâm \(I\) là \(I(0;0; - 3360).\) Phương trình mặt cầu là \((S):{x^2} + {y^2} + {(z + 3360)^2} = {3390^2}.\)
Phương trình đường thẳng \(OA:\left\{ \begin{array}{l}x = 30t\\y = - 780t\\z = 60t\end{array} \right.\)
Gọi \(B = OA \cap (S)(AB < AO{\rm{ hay }}{z_B} > 0) \Rightarrow OB\) là đoạn đường tên lửa bay trong chỏm cầu.
Ta có phương trình
\({(30t)^2} + {( - 780t)^2} + {(60t + 3360)^2} = 11492100 \Leftrightarrow 612900{t^2} + 403200t - 202500 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{3} \Rightarrow {B_1}\left( {10; - 260;20} \right)\left( {{z_{{B_1}}} > 0} \right)\\t = - \frac{{225}}{{227}} \Rightarrow {B_2}\left( { - \frac{{6750}}{{227}};\frac{{175500}}{{227}}; - \frac{{13500}}{{227}}} \right)\left( {{z_{{B_2}}} < 0} \right)\end{array} \right. \Rightarrow B(10; - 260;20)\)
Thời gian cần tìm là
\({t_{OB}} = \frac{{OB}}{7} = \frac{{\sqrt {{{10}^2} + {{( - 260)}^2} + {{20}^2}} }}{7} = \frac{{10\sqrt {681} }}{7} \approx 37{\rm{ (gi\^a y)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



