Trong không gian \(Oxyz\) cho trước với mặt nước phẳng lặng trùng với mặt phẳng \((Oxy)\), đơn vị trên mỗi trục là mét; một chú chim bói cá đang đậu trên một cành cây ở vị trí \(A(0;0;5)\) tiến hành bay xuống để thám thính ngang qua trên mặt hồ nước đến đậu trên một cành cây khác tại vị trí \(B(4;0;4)\) theo quỹ đạo là một cung tròn hoàn hảo nằm trong mặt phẳng vuông góc với mặt nước đi qua điểm \(M\) thỏa mãn \(\widehat {AMB} = {135^ \circ }\) (Điểm \(M\) như hình vẽ bên dưới).
Quảng cáo
Trả lời:
a) Đúng, Vì quỹ đạo bay của chim bói cá thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {Oxy} \right)\) nên sẽ có phương trình là \(ax + by + c = 0\) (trong đó \(a,b\) không đồng thời bằng 0).
Vì mặt phẳng đi qua 2 điểm \(A(0;0;5)\) và \(B(4;0;4)\) nên ta có hệ \(\left\{ \begin{array}{l}c = 0\\4a + c = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 0\\a = 0\end{array} \right.\)
Nên quỹ đạo bay của chim bói cá thuộc mặt phẳng \(y = 0\).
b) Sai, Đường tròn chứa quỹ đạo bay của chim bói cá có phương trình là \({x^2} + {z^2} - 2ax - 2bz + c = 0\) điều kiện \({a^2} + {b^2} - c > 0\).
Vì đường tròn đi qua các điểm \(A(0;0;5)\), \(B(4;0;4)\)nên ta có hệ phương trình
\(\left\{ \begin{array}{l}0a - 10b + c = - 25\\ - 8a - 8b + c = - 32\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 10b - 25\\ - 8a + 2b = - 7\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 10b - 25\\a = \frac{1}{4}b + \frac{7}{8}\end{array} \right.\).
Vì đường tròn đi qua điểm \(M\) thỏa mãn \(\widehat {AMB} = {135^ \circ }\) nên cung suy ra tam giác \(AIB\) vuông cân tại \(I\) suy ra \(R = \frac{{AB}}{{\sqrt 2 }} = \sqrt {\frac{{17}}{2}} \Rightarrow {a^2} + {b^2} - c = \frac{{17}}{2}\).
Suy ra \[{\left( {\frac{1}{4}b + \frac{7}{8}} \right)^2} + {b^2} - 10b + 25 = \frac{{17}}{2} \Rightarrow \frac{{17}}{{16}}{b^2} - \frac{{153}}{{16}}b + \frac{{1105}}{{64}} = 0 \Rightarrow \left[ \begin{array}{l}b = \frac{{13}}{2}\\b = \frac{5}{2}\end{array} \right.\].
Với \(b = \frac{{13}}{2}\) thì \(a = \frac{5}{2},c = 40\) đường tròn chứa quỹ đạo bay của chim bói cá có tâm \(I\left( {\frac{5}{2};0;\frac{{13}}{2}} \right).\)
Với \(b = \frac{5}{2}\) thì \(a = \frac{3}{2},c = 0\) đường tròn chứa quỹ đạo bay của chim bói cá có tâm \(I\left( {\frac{3}{2};0;\frac{5}{2}} \right).\)
Nhưng do đường tròn chứa cung như hình vẽ cao độ sẽ lớn hơn cao độ của điểm \(B\) nên ta nhận đường tròn chứa quỹ đạo bay của chim bói cá có tâm \(I\left( {\frac{5}{2};0;\frac{{13}}{2}} \right)\).
c) Đúng, Vì giao điểm của hai mặt phẳng \(\left( {Oxz} \right)\) và \(\left( {Oxy} \right)\) là trục \(Ox\) nên khoảng cách ngắn nhất mà chim bói cá bay xuống sát với mặt nước nhất là \(d = d\left( {I,Ox} \right) - R = \frac{{13}}{2} - \sqrt {\frac{{17}}{2}} \approx 3,58\,\left( {\rm{m}} \right)\).
d) Đúng, Điểm gần mặt nước nhất là điểm thấp nhất trên cung tròn (đỉnh vòm). Gọi là \(H\).
Ta cần tính độ dài cung\(AH\).
Xét tam giác \(IAH\) trong mặt phẳng quỹ đạo. \(I\left( {\frac{5}{2};0;\frac{{13}}{2}} \right),A\left( {0;0;5} \right)\)\( \Rightarrow \overrightarrow {IA} = \left( { - \frac{5}{2};0; - \frac{3}{2}} \right)\).
Vector chỉ hướng thẳng đứng xuống dưới từ tâm là \(\overrightarrow v = (0;0; - 1)\).
Góc quay \(\alpha \) từ \(A\) đến điểm thấp nhất \(H\) được tính qua cosin góc giữa \(IA\) và trục thẳng đứng: \(\cos \alpha = \frac{{\left| {{z_{IA}}} \right|}}{R} = \frac{{1,5}}{{\sqrt {\frac{{17}}{2}} }}\).
Suy ra \(\alpha = \arccos \left( {\frac{{1,5}}{{\sqrt {8,5} }}} \right) \approx 1,03{\mathop{\rm rad}\nolimits} \).
Độ dài cung \(L = R \cdot \alpha = \sqrt {8,5} \cdot 1,03 \approx 2,915 \cdot 1,03 \approx 3,00\;{\rm{m}}\).
Thời gian bay \(t = \frac{L}{v} = \frac{{3,00}}{2} = 1,5\) giây.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 209.
Gọi \(x\left( {\rm{m}} \right)\)\(\left( {x > 0} \right)\) là chiều rộng đáy. Khi đó chiều dài đáy là \(1,5x\left( {\rm{m}} \right)\)
Gọi \(h\left( {\rm{m}} \right)\) là chiều cao của thùng.
Theo đề bài, thể tích của thùng \(1{{\rm{m}}^{\rm{3}}}\) nên ta có: \(1,5x \times x \times h = 1 \Leftrightarrow h = \frac{1}{{1,5{x^2}}} = \frac{2}{{3{x^2}}}\).
Diện tích các mặt bên của thùng là: \({S_{ben}} = 2.1,5x.h + 2xh = 5xh = \frac{{10}}{{3x}}\)
Diện tích các mặt đáy thùng là: \({S_{day}} = 1,5{x^2}\)
Chi phí làm mặt bên là: \({C_{ben}} = 180000.\frac{{10}}{{3x}} = \frac{{600000}}{x}\)
Chi phí làm mặt đáy là: \({C_{day}} = 240000.1,5{x^2} = 360000{x^2}\).
Chi phí để sản xuất 1 thùng là: \(C\left( x \right) = 360000{x^2} + \frac{{600000}}{x}\).
Ta có \(C'\left( x \right) = 720000x - \frac{{600000}}{{{x^2}}}\).
\(C'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{5}{6}}}\).

Khi đó chi phí thấp nhất để sản xuất một thùng là \({C_{\min }} \approx 956392,713\) (đồng).
Số thùng sản xuất tối đa là: \(n = \frac{{200000000}}{{956393,713}} \approx 209,119\)(thùng).
Vậy số thùng tối đa có thể sản xuất là \(209\) thùng.
Lời giải
Đáp án: 37.

Gọi \(I\) là tâm của mặt cầu, \(M\) là giao điểm của đường tròn trên mặt đất với trục \(Oy.\) Khi đó
\(I{M^2} = {(IM - 30)^2} + {450^2} \Leftrightarrow IM = \frac{{{{30}^2} + {{450}^2}}}{{2.30}} = 3390{\rm{ km}}{\rm{.}}\)
Tọa độ tâm \(I\) là \(I(0;0; - 3360).\) Phương trình mặt cầu là \((S):{x^2} + {y^2} + {(z + 3360)^2} = {3390^2}.\)
Phương trình đường thẳng \(OA:\left\{ \begin{array}{l}x = 30t\\y = - 780t\\z = 60t\end{array} \right.\)
Gọi \(B = OA \cap (S)(AB < AO{\rm{ hay }}{z_B} > 0) \Rightarrow OB\) là đoạn đường tên lửa bay trong chỏm cầu.
Ta có phương trình
\({(30t)^2} + {( - 780t)^2} + {(60t + 3360)^2} = 11492100 \Leftrightarrow 612900{t^2} + 403200t - 202500 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{3} \Rightarrow {B_1}\left( {10; - 260;20} \right)\left( {{z_{{B_1}}} > 0} \right)\\t = - \frac{{225}}{{227}} \Rightarrow {B_2}\left( { - \frac{{6750}}{{227}};\frac{{175500}}{{227}}; - \frac{{13500}}{{227}}} \right)\left( {{z_{{B_2}}} < 0} \right)\end{array} \right. \Rightarrow B(10; - 260;20)\)
Thời gian cần tìm là
\({t_{OB}} = \frac{{OB}}{7} = \frac{{\sqrt {{{10}^2} + {{( - 260)}^2} + {{20}^2}} }}{7} = \frac{{10\sqrt {681} }}{7} \approx 37{\rm{ (gi\^a y)}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



