Một doanh nghiệp vận tải muốn đóng các thùng gỗ để chứa hàng hóa trong quá trình vận chuyển. Mỗi thùng được thiết kế theo dạng hình hộp chữ nhật không có nắp, đáy có thể tích \(1{{\rm{m}}^{\rm{3}}}\). Để đảm bảo phù hợp với thiết bị xếp dỡ, thùng được thiết kế sao cho chiều dài của đáy gấp \(1,5\)lần chiều rộng.Biết chi phí vật liệu làm mặt đáy là \(240.000\)đồng/m², chi phí vật liệu làm mặt bên là \(180.000\)đồng/m² (bỏ qua các chi phí khác như lắp ráp, vận chuyển, hao hụt vật liệu,…). Hỏi với số tiền là \(200\)triệu đồng, doanh nghiệp có thể sản xuất tối đa bao nhiêu thùng gỗ?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 209.
Gọi \(x\left( {\rm{m}} \right)\)\(\left( {x > 0} \right)\) là chiều rộng đáy. Khi đó chiều dài đáy là \(1,5x\left( {\rm{m}} \right)\)
Gọi \(h\left( {\rm{m}} \right)\) là chiều cao của thùng.
Theo đề bài, thể tích của thùng \(1{{\rm{m}}^{\rm{3}}}\) nên ta có: \(1,5x \times x \times h = 1 \Leftrightarrow h = \frac{1}{{1,5{x^2}}} = \frac{2}{{3{x^2}}}\).
Diện tích các mặt bên của thùng là: \({S_{ben}} = 2.1,5x.h + 2xh = 5xh = \frac{{10}}{{3x}}\)
Diện tích các mặt đáy thùng là: \({S_{day}} = 1,5{x^2}\)
Chi phí làm mặt bên là: \({C_{ben}} = 180000.\frac{{10}}{{3x}} = \frac{{600000}}{x}\)
Chi phí làm mặt đáy là: \({C_{day}} = 240000.1,5{x^2} = 360000{x^2}\).
Chi phí để sản xuất 1 thùng là: \(C\left( x \right) = 360000{x^2} + \frac{{600000}}{x}\).
Ta có \(C'\left( x \right) = 720000x - \frac{{600000}}{{{x^2}}}\).
\(C'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{5}{6}}}\).

Khi đó chi phí thấp nhất để sản xuất một thùng là \({C_{\min }} \approx 956392,713\) (đồng).
Số thùng sản xuất tối đa là: \(n = \frac{{200000000}}{{956393,713}} \approx 209,119\)(thùng).
Vậy số thùng tối đa có thể sản xuất là \(209\) thùng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 37.

Gọi \(I\) là tâm của mặt cầu, \(M\) là giao điểm của đường tròn trên mặt đất với trục \(Oy.\) Khi đó
\(I{M^2} = {(IM - 30)^2} + {450^2} \Leftrightarrow IM = \frac{{{{30}^2} + {{450}^2}}}{{2.30}} = 3390{\rm{ km}}{\rm{.}}\)
Tọa độ tâm \(I\) là \(I(0;0; - 3360).\) Phương trình mặt cầu là \((S):{x^2} + {y^2} + {(z + 3360)^2} = {3390^2}.\)
Phương trình đường thẳng \(OA:\left\{ \begin{array}{l}x = 30t\\y = - 780t\\z = 60t\end{array} \right.\)
Gọi \(B = OA \cap (S)(AB < AO{\rm{ hay }}{z_B} > 0) \Rightarrow OB\) là đoạn đường tên lửa bay trong chỏm cầu.
Ta có phương trình
\({(30t)^2} + {( - 780t)^2} + {(60t + 3360)^2} = 11492100 \Leftrightarrow 612900{t^2} + 403200t - 202500 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{3} \Rightarrow {B_1}\left( {10; - 260;20} \right)\left( {{z_{{B_1}}} > 0} \right)\\t = - \frac{{225}}{{227}} \Rightarrow {B_2}\left( { - \frac{{6750}}{{227}};\frac{{175500}}{{227}}; - \frac{{13500}}{{227}}} \right)\left( {{z_{{B_2}}} < 0} \right)\end{array} \right. \Rightarrow B(10; - 260;20)\)
Thời gian cần tìm là
\({t_{OB}} = \frac{{OB}}{7} = \frac{{\sqrt {{{10}^2} + {{( - 260)}^2} + {{20}^2}} }}{7} = \frac{{10\sqrt {681} }}{7} \approx 37{\rm{ (gi\^a y)}}{\rm{.}}\)
Lời giải
Đáp án: \(0,56\).

Mặt phẳng \(\left( {CDEF} \right)\) có cặp vectơ chỉ phương \(\vec k = \left( {0;0;1} \right)\), \(\overrightarrow {MN} = \left( {4; - 1;8} \right)\).
Þ \(\left( {CDEF} \right)\) có vectơ pháp tuyến \(\left[ {\vec k;\overrightarrow {MN} } \right] = \left( {1;4;0} \right)\).
Þ Phương trình mặt phẳng \(\left( {CDEF} \right)\): \(1.\left( {x - 4} \right) + 4.\left( {y - 15} \right) = 0 \Leftrightarrow x + 4y - 64 = 0\).
Toạ độ điểm \(A\left( {8;5;0} \right)\) và điểm đá bóng là \(K\left( {0;0;2} \right)\).
Mặt phẳng \(\left( \alpha \right)\) chứa quỹ đạo của quả bóng có cặp vectơ chỉ phương \(\vec k = \left( {0;0;1} \right)\), \(\overrightarrow {OA} = \left( {8;15;0} \right)\)
Þ \(\left( \alpha \right)\) có vectơ pháp tuyến \(\left[ {\vec k;\overrightarrow {OA} } \right] = \left( { - 15;8;0} \right)\)
Þ Phương trình mặt phẳng \(\left( \alpha \right)\): \( - 15.\left( {x - 0} \right) + 8.\left( {y - 0} \right) = 0 \Leftrightarrow 15x - 8y = 0\).
Gọi \(B\)là hình chiếu của đỉnh quỹ đạo parabol của quả bóng xuống mặt phẳng \(\left( {Oxy} \right)\) Þ \(B \in OA\)
Ta có \(\overrightarrow {OB} = k.\overrightarrow {OA} \Leftrightarrow \left\{ \begin{array}{l}{x_B} = k.{x_A}\\{y_B} = k.{y_A}\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 = k.8\\{y_B} = k.15\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{3}{8}\\{y_B} = \frac{{45}}{8}\\{z_B} = 0\end{array} \right. \Rightarrow B\left( {3;\frac{{45}}{8};0} \right)\)
Gọi \(T\) là hình chiếu của quả bóng bắt đầu bay vào khung thành trên mặt phẳng \(\left( {Oxy} \right)\) thì toạ độ điểm \(T\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 4y = 64\\15x - 8y = 0\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{128}}{{17}}\\y = \frac{{240}}{{17}}\\z = 0\end{array} \right. \Rightarrow T\left( {\frac{{128}}{{17}};\frac{{240}}{{17}};0} \right)\)
Xét hệ trục toạ độ \(Otz\) với tia \(Ot\) cùng hướng với tia \(OA\).
Ta có \(OA = \sqrt {{8^2} + {{15}^2}} = 17\), \(OB = \sqrt {{3^2} + {{\left( {\frac{{45}}{8}} \right)}^2}} = \frac{{51}}{8}\), \(OT = \sqrt {{{\left( {\frac{{128}}{{17}}} \right)}^2} + {{\left( {\frac{{240}}{{17}}} \right)}^2}} = 16\).

Quỹ đạo quả bóng trong hệ trục \(Otz\) là parabol\(\left( P \right):z = a{t^2} + bt + c\)
Ta có \(\left( P \right)\) qua các điểm \(K\left( {0;2} \right),A\left( {17;0} \right)\) và có hoành độ đỉnh \(t = \frac{{51}}{8}\)
Þ \(\left\{ \begin{array}{l}c = 2\\289a + 17b + c = 0\\ - \frac{b}{{2a}} = \frac{{51}}{8}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{8}{{289}}\\b = \frac{6}{{17}}\\c = 2\end{array} \right. \Rightarrow \left( P \right):z = - \frac{8}{{289}}{t^2} + \frac{6}{{17}}t + 2\).
Độ cao của quả bóng khi bắt đầu vào khung thành là: \(z\left( {16} \right) = \frac{{162}}{{289}} \approx 0,56\left( m \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



