Trong trận đấu giữa Thụy Điển và Anh tại giải vô địch bóng đá thế giới, khi thời gian trận đấu sắp kết thúc, Zlatan Ibrahimović đã thực hiện một cú xe đạp chồng ngược móc bóng từ khoảng cách xa vào lưới đội tuyển Anh. Đây được coi là một trong những bàn thắng đẹp nhất lịch sử bóng đá thế giới với khoảng cách xa nhất từng được ghi bằng kỹ thuật này. Chọn hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo mét) sao cho \(\left( {Oxy} \right)\) trùng với mặt đất, tại thời điểm Ibra tung người móc bóng quả bóng thuộc tia \(Oz\) và có độ cao\(2m\), bay theo quỹ đạo của một Parabol thuộc mặt phẳng vuông góc với mặt đất rơi xuống đất tại vị trí điểm \(A\) nằm trong khung thành. Biết \(d\left( {A,Oy} \right) = AH = 8\left( {H \in Oy} \right)\) và \(OH = 15\). Sau khi bay lên không trung quả bóng đạt độ cao lớn nhất tại điểm có hoành độ \(x = 3\). Tại thời điểm bóng bắt đầu bay vào khung thành (tức là bóng nằm trên vạch kẻ ngang của khung thành) thì độ cao của quả bóng so với mặt đất là bao nhiêu mét? Biết rằng khung thành \(CDEF\) nằm trong mặt phẳng vuông góc với mặt đất và đi qua 2 điểm \(M\left( {4;15; - 2} \right),N\left( {8;14;6} \right)\). (làm tròn kết quả đến hàng phần trăm).

Trong trận đấu giữa Thụy Điển và Anh tại giải vô địch bóng đá thế giới, khi thời gian trận đấu sắp kết thúc, Zlatan Ibrahimović đã thực hiện một cú xe đạp chồng ngược móc bóng từ khoảng cách xa vào lưới đội tuyển Anh. Đây được coi là một trong những bàn thắng đẹp nhất lịch sử bóng đá thế giới với khoảng cách xa nhất từng được ghi bằng kỹ thuật này. Chọn hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo mét) sao cho \(\left( {Oxy} \right)\) trùng với mặt đất, tại thời điểm Ibra tung người móc bóng quả bóng thuộc tia \(Oz\) và có độ cao\(2m\), bay theo quỹ đạo của một Parabol thuộc mặt phẳng vuông góc với mặt đất rơi xuống đất tại vị trí điểm \(A\) nằm trong khung thành. Biết \(d\left( {A,Oy} \right) = AH = 8\left( {H \in Oy} \right)\) và \(OH = 15\). Sau khi bay lên không trung quả bóng đạt độ cao lớn nhất tại điểm có hoành độ \(x = 3\). Tại thời điểm bóng bắt đầu bay vào khung thành (tức là bóng nằm trên vạch kẻ ngang của khung thành) thì độ cao của quả bóng so với mặt đất là bao nhiêu mét? Biết rằng khung thành \(CDEF\) nằm trong mặt phẳng vuông góc với mặt đất và đi qua 2 điểm \(M\left( {4;15; - 2} \right),N\left( {8;14;6} \right)\). (làm tròn kết quả đến hàng phần trăm).

Quảng cáo
Trả lời:
Đáp án:
Đáp án: \(0,56\).

Mặt phẳng \(\left( {CDEF} \right)\) có cặp vectơ chỉ phương \(\vec k = \left( {0;0;1} \right)\), \(\overrightarrow {MN} = \left( {4; - 1;8} \right)\).
Þ \(\left( {CDEF} \right)\) có vectơ pháp tuyến \(\left[ {\vec k;\overrightarrow {MN} } \right] = \left( {1;4;0} \right)\).
Þ Phương trình mặt phẳng \(\left( {CDEF} \right)\): \(1.\left( {x - 4} \right) + 4.\left( {y - 15} \right) = 0 \Leftrightarrow x + 4y - 64 = 0\).
Toạ độ điểm \(A\left( {8;5;0} \right)\) và điểm đá bóng là \(K\left( {0;0;2} \right)\).
Mặt phẳng \(\left( \alpha \right)\) chứa quỹ đạo của quả bóng có cặp vectơ chỉ phương \(\vec k = \left( {0;0;1} \right)\), \(\overrightarrow {OA} = \left( {8;15;0} \right)\)
Þ \(\left( \alpha \right)\) có vectơ pháp tuyến \(\left[ {\vec k;\overrightarrow {OA} } \right] = \left( { - 15;8;0} \right)\)
Þ Phương trình mặt phẳng \(\left( \alpha \right)\): \( - 15.\left( {x - 0} \right) + 8.\left( {y - 0} \right) = 0 \Leftrightarrow 15x - 8y = 0\).
Gọi \(B\)là hình chiếu của đỉnh quỹ đạo parabol của quả bóng xuống mặt phẳng \(\left( {Oxy} \right)\) Þ \(B \in OA\)
Ta có \(\overrightarrow {OB} = k.\overrightarrow {OA} \Leftrightarrow \left\{ \begin{array}{l}{x_B} = k.{x_A}\\{y_B} = k.{y_A}\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 = k.8\\{y_B} = k.15\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{3}{8}\\{y_B} = \frac{{45}}{8}\\{z_B} = 0\end{array} \right. \Rightarrow B\left( {3;\frac{{45}}{8};0} \right)\)
Gọi \(T\) là hình chiếu của quả bóng bắt đầu bay vào khung thành trên mặt phẳng \(\left( {Oxy} \right)\) thì toạ độ điểm \(T\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 4y = 64\\15x - 8y = 0\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{128}}{{17}}\\y = \frac{{240}}{{17}}\\z = 0\end{array} \right. \Rightarrow T\left( {\frac{{128}}{{17}};\frac{{240}}{{17}};0} \right)\)
Xét hệ trục toạ độ \(Otz\) với tia \(Ot\) cùng hướng với tia \(OA\).
Ta có \(OA = \sqrt {{8^2} + {{15}^2}} = 17\), \(OB = \sqrt {{3^2} + {{\left( {\frac{{45}}{8}} \right)}^2}} = \frac{{51}}{8}\), \(OT = \sqrt {{{\left( {\frac{{128}}{{17}}} \right)}^2} + {{\left( {\frac{{240}}{{17}}} \right)}^2}} = 16\).

Quỹ đạo quả bóng trong hệ trục \(Otz\) là parabol\(\left( P \right):z = a{t^2} + bt + c\)
Ta có \(\left( P \right)\) qua các điểm \(K\left( {0;2} \right),A\left( {17;0} \right)\) và có hoành độ đỉnh \(t = \frac{{51}}{8}\)
Þ \(\left\{ \begin{array}{l}c = 2\\289a + 17b + c = 0\\ - \frac{b}{{2a}} = \frac{{51}}{8}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{8}{{289}}\\b = \frac{6}{{17}}\\c = 2\end{array} \right. \Rightarrow \left( P \right):z = - \frac{8}{{289}}{t^2} + \frac{6}{{17}}t + 2\).
Độ cao của quả bóng khi bắt đầu vào khung thành là: \(z\left( {16} \right) = \frac{{162}}{{289}} \approx 0,56\left( m \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 209.
Gọi \(x\left( {\rm{m}} \right)\)\(\left( {x > 0} \right)\) là chiều rộng đáy. Khi đó chiều dài đáy là \(1,5x\left( {\rm{m}} \right)\)
Gọi \(h\left( {\rm{m}} \right)\) là chiều cao của thùng.
Theo đề bài, thể tích của thùng \(1{{\rm{m}}^{\rm{3}}}\) nên ta có: \(1,5x \times x \times h = 1 \Leftrightarrow h = \frac{1}{{1,5{x^2}}} = \frac{2}{{3{x^2}}}\).
Diện tích các mặt bên của thùng là: \({S_{ben}} = 2.1,5x.h + 2xh = 5xh = \frac{{10}}{{3x}}\)
Diện tích các mặt đáy thùng là: \({S_{day}} = 1,5{x^2}\)
Chi phí làm mặt bên là: \({C_{ben}} = 180000.\frac{{10}}{{3x}} = \frac{{600000}}{x}\)
Chi phí làm mặt đáy là: \({C_{day}} = 240000.1,5{x^2} = 360000{x^2}\).
Chi phí để sản xuất 1 thùng là: \(C\left( x \right) = 360000{x^2} + \frac{{600000}}{x}\).
Ta có \(C'\left( x \right) = 720000x - \frac{{600000}}{{{x^2}}}\).
\(C'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{5}{6}}}\).

Khi đó chi phí thấp nhất để sản xuất một thùng là \({C_{\min }} \approx 956392,713\) (đồng).
Số thùng sản xuất tối đa là: \(n = \frac{{200000000}}{{956393,713}} \approx 209,119\)(thùng).
Vậy số thùng tối đa có thể sản xuất là \(209\) thùng.
Lời giải
Đáp án: 37.

Gọi \(I\) là tâm của mặt cầu, \(M\) là giao điểm của đường tròn trên mặt đất với trục \(Oy.\) Khi đó
\(I{M^2} = {(IM - 30)^2} + {450^2} \Leftrightarrow IM = \frac{{{{30}^2} + {{450}^2}}}{{2.30}} = 3390{\rm{ km}}{\rm{.}}\)
Tọa độ tâm \(I\) là \(I(0;0; - 3360).\) Phương trình mặt cầu là \((S):{x^2} + {y^2} + {(z + 3360)^2} = {3390^2}.\)
Phương trình đường thẳng \(OA:\left\{ \begin{array}{l}x = 30t\\y = - 780t\\z = 60t\end{array} \right.\)
Gọi \(B = OA \cap (S)(AB < AO{\rm{ hay }}{z_B} > 0) \Rightarrow OB\) là đoạn đường tên lửa bay trong chỏm cầu.
Ta có phương trình
\({(30t)^2} + {( - 780t)^2} + {(60t + 3360)^2} = 11492100 \Leftrightarrow 612900{t^2} + 403200t - 202500 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}t = \frac{1}{3} \Rightarrow {B_1}\left( {10; - 260;20} \right)\left( {{z_{{B_1}}} > 0} \right)\\t = - \frac{{225}}{{227}} \Rightarrow {B_2}\left( { - \frac{{6750}}{{227}};\frac{{175500}}{{227}}; - \frac{{13500}}{{227}}} \right)\left( {{z_{{B_2}}} < 0} \right)\end{array} \right. \Rightarrow B(10; - 260;20)\)
Thời gian cần tìm là
\({t_{OB}} = \frac{{OB}}{7} = \frac{{\sqrt {{{10}^2} + {{( - 260)}^2} + {{20}^2}} }}{7} = \frac{{10\sqrt {681} }}{7} \approx 37{\rm{ (gi\^a y)}}{\rm{.}}\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


