Có bao nhiêu giá trị nguyên của tham số \[m \in \left( { - 20;\,\, + \infty } \right)\] để bất phương trình \({4^{{x^2}}} - \left( {m + 1} \right){2^{{x^2} + 1}} + m + 3 \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) (nhập đáp án vào ô trống)?
Đáp án ___
Quảng cáo
Trả lời:
Tập xác định \(D = \mathbb{R}.\)
Đặt \(t = {2^{{x^2}}}\,\,\left( {t \ge 1} \right)\), khi đó bất phương trình trở thành \({t^2} - 2\left( {m + 1} \right)t + m + 3 \ge 0\).
Với \(t \ge 1\) thì \((*) \Leftrightarrow {t^2} - 2t + 3 \ge m\left( {2t - 1} \right) \Leftrightarrow \frac{{{t^2} - 2t + 3}}{{2t - 1}} \ge m.\)
Xét hàm số \(f\left( t \right) = \frac{{{t^2} - 2t + 3}}{{2t - 1}}\) trên \(\left[ {1\,;\,\, + \infty } \right)\).
Ta có \(f'\left( t \right) = \frac{{\left( {2t - 2} \right)\left( {2t - 1} \right) - 2\left( {{t^2} - 2t + 3} \right)}}{{{{\left( {2t - 1} \right)}^2}}} = \frac{{2{t^2} - 2t - 4}}{{{{\left( {2t - 1} \right)}^2}}}.\)
Do đó hàm số \(f\left( t \right)\) có bảng biến thiên như sau:

Dựa vào bảng biến thiên ta thấy để bất phương trình \(f\left( t \right) \ge m,\,\,\forall t \in \left[ {1\,;\,\, + \infty } \right)\) thì \(m \le 1.\)
Vậy có 21 giá trị nguyên \(m\) thỏa mãn yêu cầu bài toán.
Đáp án cần nhập là: 21.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Câu 2
Lời giải
Nội dung chính của đoạn trích là: Cuộc sống tại nhà thống lí Pá Tra rút cạn sức sống của Mị, Mị chẳng màng đến cái chết. Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.