Trong không gian \[Oxyz,\] cho ba đường thẳng có phương trình lần lượt là \(d:\frac{x}{1} = \frac{y}{2} = \frac{{z + 1}}{{ - 2}},\) \({\Delta _1}:\frac{{x - 3}}{2} = \frac{y}{1} = \frac{{z - 1}}{1}\) và \({\Delta _2}:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{z}{1}.\) Đường thẳng \(\Delta \) vuông góc với \(d\) đồng thời cắt \({\Delta _1},\,\,{\Delta _2}\) tương ứng tại \[H,\,\,K\] sao cho độ dài \[HK\] nhỏ nhất. Biết rằng \(\Delta \) có một vectơ chỉ phương \(\vec u = \left( {h\,;\,\,k\,;\,\,1} \right).\) Giá trị \(h - k\) bằng (nhập đáp án vào ô trống):
Đáp án __
Quảng cáo
Trả lời:
Ta có \(H \in {\Delta _1} \Leftrightarrow H\left( {3 + 2t\,;\,\,t\,;\,\,1 + t} \right)\) và \(K \in {\Delta _2} \Leftrightarrow K\left( {1 + m\,;\,\,2 + 2m\,;\,\,m} \right).\)
Suy ra \(\overrightarrow {HK} = \left( {m - 2t - 2\,;\,\,2m - t + 2\,;\,\,m - t - 1} \right).\)
Đường thẳng \(d\) có một VTCP là \(\overrightarrow {{u_d}} = \left( {1\,;\,\,1\,;\,\, - 2} \right).\)
\(\Delta \bot d \Leftrightarrow \overrightarrow {{u_d}} \cdot \overrightarrow {HK} = 0 \Leftrightarrow m - t + 2 = 0 \Leftrightarrow m = t - 2 \Rightarrow \overrightarrow {HK} = \left( { - t - 4\,;\,\,t - 2\,;\,\, - 3} \right){\rm{. }}\)
Ta có \(H{K^2} = {\left( { - t - 4} \right)^2} + {\left( {t - 2} \right)^2} + {\left( { - 3} \right)^2} = 2{\left( {t + 1} \right)^2} + 27 \ge 27\,,\,\,\forall t \in \mathbb{R}\).
Khi đó ta có \(H{K_{\min }} = \sqrt {27} \), đạt được khi \(t = - 1.\)
Do đó \(\overrightarrow {HK} = \left( { - 3\,;\,\, - 3\,;\,\, - 3} \right)\), suy ra \(\vec u\left( {1\,;\,\,1\,;\,\,1} \right) \Rightarrow h = k = 1 \Rightarrow h - k = 0.\)
Đáp án cần nhập là: 0.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi đơn vị của enthalpy:
|
Chất |
\[{\Delta _{\rm{f}}}{\rm{H}}_{{\rm{298}}}^{\rm{o}}\] (kJ/g) |
\[{\Delta _{\rm{f}}}{\rm{H}}_{{\rm{298}}}^{\rm{o}}\] (kJ/mol) |
|
\[F{e_2}{O_3}\] |
−5,14 |
−822,4 |
|
\[A{l_2}{O_3}\] |
−16,37 |
−1669,74 |
Xét phản ứng: 2Al(s) + \[F{e_2}{O_3}\](s) \[A{l_2}{O_3}\](s) + 2Fe(s)
Biến thiên enthalpy của phản ứng:
\[{\Delta _r}H_{298}^o = {\Delta _f}H_{298}^0(A{l_2}{O_3}) + 2.{\Delta _f}H_{298}^0(Fe) - 2.{\Delta _f}H_{298}^0(Al) - {\Delta _f}H_{298}^0(F{e_2}{O_3})\]
= 1.( –1669,74) + 2.0 – 2.0 – 1.( –822,4) = –847,34 (kJ)
Nhiệt dung của sản phẩm: C = 102.0,84 + 2.56.0,67 = 160,72 (J.K-1).
Nhiệt độ tăng lên: \[\Delta T = \frac{{847,{{34.10}^3}.0,5}}{{160,72}} \approx 2636(K)\]
Nhiệt độ đạt được: (25 + 273) + 2636 = 2934 (K)
Chọn B.
Câu 2
Lời giải
Giả sử cạnh của hình lập phương là \(a > 0.\)
Gọi \(N\) là trung điểm đoạn thẳng \(BB'.\)
Khi đó, \(MN\,{\rm{//}}\,BC'\) nên \(\left( {AM\,,\,\,BC'} \right) = \left( {AM\,,\,MN} \right)\).
Xét \(\Delta A'B'M\) vuông tại \(B'\), ta có
\(A'M = \sqrt {A'{{B'}^{\prime 2}} + B'{M^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2}.\)
Xét \(\Delta AA'M\) vuông tại \(A'\), ta có \(AM = \sqrt {A{{A'}^2} + A'{M^2}} = \sqrt {{a^2} + \frac{{5{a^2}}}{4}} = \frac{{3a}}{2}.\)
Có \[AN = A'M = \frac{{a\sqrt 5 }}{2}\,;\,\,MN = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}.\]
Trong tam giác \[AMN\] ta có: \(\cos \widehat {AMN} = \frac{{M{A^2} + M{N^2} - A{N^2}}}{{2MA \cdot MN}} = \frac{{\frac{{9{a^2}}}{4} + \frac{{2{a^2}}}{4} - \frac{{5{a^2}}}{4}}}{{2 \cdot \frac{{3a}}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{1}{{\sqrt 2 }}.\)
Suy ra \(\widehat {AMN} = 45^\circ .\) Vậy \[\left( {AM,\,\,BC'} \right) = \left( {AM,\,\,MN} \right) = \widehat {AMN} = 45^\circ .\] Chọn A.

Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.