Trong không gian Oxy, cho hai đường thẳng
Phương trình mặt phẳng (P) cách đều hai đường thẳng d1 và d2 có dạng ax+by +cz = 11. Giá trị của a+2b+3c bằng (nhập đáp án vào ô trống):
Quảng cáo
Trả lời:
Đường thẳng \({d_1}\) có vectơ chỉ phương \[\overrightarrow u = \left( {1\,;\,\,0\,;\,\, - 2} \right)\] và đi qua điểm \(M\left( {1; - 3;2} \right).\)
Đường thẳng \({d_2}\) có vectơ chỉ phương \[\vec v = \left( {1\,;\,\, - 2\,;\,\,3} \right)\] và đi qua điểm \(N\left( { - 3\,;\,\,1\,;\,\, - 4} \right).\)
Ta có: \(\left[ {\vec v\,,\,\,\vec u} \right] = \left( {4\,;\,\,5\,;\,\,2} \right) \ne \vec 0\,;\,\,\overrightarrow {MN} = \left( { - 4\,;\,\,4\,;\,\, - 6} \right)\,;\,\,\left[ {\vec v\,,\,\,\vec u} \right] \cdot \overrightarrow {MN} = - 16 + 20 - 12 = - 8 \ne 0\)
\( \Rightarrow {d_1}\) và \({d_2}\) chéo nhau.
Mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) nhận \(\left[ {\vec v\,,\,\,\vec u} \right] = \left( {4\,;\,\,5\,;\,\,2} \right)\) là vectơ pháp tuyến và đi qua trung điểm \(I\left( { - 1\,;\,\, - 1\,;\,\, - 1} \right)\) của đoạn MN.
Suy ra phương trình của \(\left( P \right):4\left( {x + 1} \right) + 5\left( {y + 1} \right) + 2\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 5y + 2z + 11 = 0\)
\( \Rightarrow a = 4\,;\,\,b = 5\,;\,\,c = 2 \Rightarrow a + 2b + 3c = 20.\)
Đáp án cần nhập là: 20.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nội dung chính của đoạn trích là: Cuộc sống tại nhà thống lí Pá Tra rút cạn sức sống của Mị, Mị chẳng màng đến cái chết. Chọn B.
Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.