Have you spoken to that guy _______ daughter might be able to help you with the contract?
Quảng cáo
Trả lời:
Kiến thức về đại từ quan hệ
A. who: làm chủ ngữ hoặc tân ngữ, thay thế danh từ chỉ người.
B. whom: làm tân ngữ, thay thế danh từ chỉ người; phải đi kèm giới từ.
C. whose: chỉ sự sở hữu của cả người và vật, theo sau luôn là danh từ.
D. which: làm chủ ngữ hoặc tân ngữ, thay thế danh từ chỉ vật
Sau chỗ trống là một danh từ khác với chủ ngữ đang cần bổ nghĩa, cần dùng đại từ chỉ sự sở hữu để liên kết.
Chọn C.
Dịch: Bạn đã nói chuyện với người đàn ông có con gái có thể giúp bạn vụ hợp đồng chưa?
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi đơn vị của enthalpy:
|
Chất |
\[{\Delta _{\rm{f}}}{\rm{H}}_{{\rm{298}}}^{\rm{o}}\] (kJ/g) |
\[{\Delta _{\rm{f}}}{\rm{H}}_{{\rm{298}}}^{\rm{o}}\] (kJ/mol) |
|
\[F{e_2}{O_3}\] |
−5,14 |
−822,4 |
|
\[A{l_2}{O_3}\] |
−16,37 |
−1669,74 |
Xét phản ứng: 2Al(s) + \[F{e_2}{O_3}\](s) \[A{l_2}{O_3}\](s) + 2Fe(s)
Biến thiên enthalpy của phản ứng:
\[{\Delta _r}H_{298}^o = {\Delta _f}H_{298}^0(A{l_2}{O_3}) + 2.{\Delta _f}H_{298}^0(Fe) - 2.{\Delta _f}H_{298}^0(Al) - {\Delta _f}H_{298}^0(F{e_2}{O_3})\]
= 1.( –1669,74) + 2.0 – 2.0 – 1.( –822,4) = –847,34 (kJ)
Nhiệt dung của sản phẩm: C = 102.0,84 + 2.56.0,67 = 160,72 (J.K-1).
Nhiệt độ tăng lên: \[\Delta T = \frac{{847,{{34.10}^3}.0,5}}{{160,72}} \approx 2636(K)\]
Nhiệt độ đạt được: (25 + 273) + 2636 = 2934 (K)
Chọn B.
Câu 2
Lời giải
Giả sử cạnh của hình lập phương là \(a > 0.\)
Gọi \(N\) là trung điểm đoạn thẳng \(BB'.\)
Khi đó, \(MN\,{\rm{//}}\,BC'\) nên \(\left( {AM\,,\,\,BC'} \right) = \left( {AM\,,\,MN} \right)\).
Xét \(\Delta A'B'M\) vuông tại \(B'\), ta có
\(A'M = \sqrt {A'{{B'}^{\prime 2}} + B'{M^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2}.\)
Xét \(\Delta AA'M\) vuông tại \(A'\), ta có \(AM = \sqrt {A{{A'}^2} + A'{M^2}} = \sqrt {{a^2} + \frac{{5{a^2}}}{4}} = \frac{{3a}}{2}.\)
Có \[AN = A'M = \frac{{a\sqrt 5 }}{2}\,;\,\,MN = \frac{{BC'}}{2} = \frac{{a\sqrt 2 }}{2}.\]
Trong tam giác \[AMN\] ta có: \(\cos \widehat {AMN} = \frac{{M{A^2} + M{N^2} - A{N^2}}}{{2MA \cdot MN}} = \frac{{\frac{{9{a^2}}}{4} + \frac{{2{a^2}}}{4} - \frac{{5{a^2}}}{4}}}{{2 \cdot \frac{{3a}}{2} \cdot \frac{{a\sqrt 2 }}{2}}} = \frac{1}{{\sqrt 2 }}.\)
Suy ra \(\widehat {AMN} = 45^\circ .\) Vậy \[\left( {AM,\,\,BC'} \right) = \left( {AM,\,\,MN} \right) = \widehat {AMN} = 45^\circ .\] Chọn A.

Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.