Câu hỏi:

01/02/2026 6 Lưu

Tính xác suất của các biến cố sau:

\(E\): “Trong hai bạn được chọn, có một bạn nam và một bạn nữ”;

\(F\): “Trong hai bạn được chọn có bạn Dung”;

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn: Xem Ví dụ 7. Số phần tử của tập hợp \(\Omega \) là 6 .

Lời giải

Ta có: \(\Omega = \){Hùng - Dũng; Hùng - Dung; Hùng - Nguyệt; Dũng - Dung; Dũng - Nguyệt; Dung - Nguyệt}.

\({\rm{E}} = \){Hùng - Dung; Hùng - Nguyệt; Dũng - Dung; Dũng - Nguyệt\(\} \). Vậy \(P\left( E \right) = \frac{4}{6} = \frac{2}{3}\).

Ta có: \({\rm{F}} = \){Hùng - Dung; Dũng - Dung; Dung - Nguyệt\(\} \). Vậy \(P\left( F \right) = \frac{3}{6} = \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng sau:

            Dạng hạt

 

Màu hạt

\(BB\)

\(Bb\)

\(bB\)

\(bb\)

\(AA\)

\(\left( {AA;BB} \right)\)

\(\left( {AA;Bb} \right)\)

\(\left( {AA;bB} \right)\)

\(\left( {AA;bb} \right)\)

\(Aa\)

\[\left( {Aa;BB} \right)\]

\(\left( {Aa;Bb} \right)\)

\(\left( {Aa;bB} \right)\)

\(\left( {Aa;bb} \right)\)

Gọi \(E\) là biến cố “cây con có hạt vàng nhăn”. Ta có: \[E = \left\{ {\left( {AA,bb} \right);\left( {Aa;bb} \right)} \right\}\].

Có hai kết quả thuận lợi cho biến cố \(E\).

\(\Omega = \left\{ {\left( {AA,BB} \right);\left( {AA,Bb} \right);\left( {AA;bB} \right);\left( {AA,bb} \right);\left( {Aa,BB} \right);\left( {Aa,Bb} \right);\left( {Aa;bB} \right);\left( {Aa,bb} \right)} \right\}\)

Vậy\({\rm{ }}P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{2}{8} = \frac{1}{4}.\)

Lời giải

Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.

a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).

b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP