Câu hỏi:

01/02/2026 64 Lưu

Một hộp đựng 20 viên bi đỏ và xanh có cùng kích thước, khối lượng. Tìm số viên bi mỗi màu, biết rằng xác suất của biến cố \(A\): “Lấy được bi đỏ” khi thực hiện phép thử lấy ngẫu nhiên một viên bi là \(P\left( A \right) = 0,6\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(n\) là số viên bi đỏ trong hộp. Ta có: \(n\left( A \right) = n \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{n}{{20}}\).

Theo giả thiết, ta có: \(\frac{n}{{20}} = 0,6 \Rightarrow n = 12\). Vậy có 12 viên bi màu đỏ và 8 viên bi màu xanh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:\(\Omega = \{ 22;24;29;42;44;49;92;94;99\} \). Số phần tử của \(\Omega \) là 9.

a) Ta có: \(A = \left\{ {24;44;92} \right\}\). Tập hợp \(A\) có 3 phần tử. Vậy \(P\left( A \right) = \frac{3}{9} = \frac{1}{3}\).

b) Ta có: \(B = \left\{ {29} \right\}\). Tập hợp \(B\) có 1 phần tử. Vậy\(P\;\left( B \right) = \frac{1}{9}.\)

Lời giải

a) Kí hiệu quả cầu đen, trắng thứ tự là Đ, T.

Ta có bảng sau:

                  Tấm thẻ

Qủa cầu

A

B

C

1

 

 

 

2

\(\left( {T;A} \right)\)

\(\left( {T;B} \right)\)

\(\left( {T;C} \right)\)

Không gian mẫu có 6 phần tử.

b) Ta có: . Vậy \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{3}{6} = \frac{1}{2}\)

\[F = \left\{ {\left( {{\rm{T}};{\rm{B}}} \right);\left( {{\rm{T}};{\rm{C}}} \right)} \right\}.{\rm{ }}\]Vậy \[P\;\left( F \right) = \frac{2}{6} = \frac{1}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP