Gọi \({x_1};\,{x_2}\) là nghiệm của phương trình \({x^2} - 5mx - 2 = 0.\) Giá trị của biểu thức \(A = x_1^2 + x_2^2\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Chọn B
Phương trình \({x^2} - 5x + 2 = 0\) có \(\Delta = {\left( { - 5m} \right)^2} + 4 \cdot 1 \cdot 2 = 25{m^2} + 8 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}.\)
Theo định lí Viète, ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5m\\{x_1}{x_2} = - 2\end{array} \right.\).
Ta có: \(A = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( {5m} \right)^2} - 2 \cdot \left( { - 2} \right) = 25{m^2} + 4.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \[ - 2{x^2} - 6x - 1 = 0\] có \[{\rm{\Delta }} = {( - 6)^2} - 4.( - 2).( - 1) = 28 > 0\] nên phương trình có hai nghiệm \[{x_1};{x_2}\]
Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}.{x_2} = \frac{c}{a}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = - 3\\{x_1}.{x_2} = \frac{1}{2}\end{array} \right.\]
Ta có \[N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.( - 3) + 9}} = 6\]
Câu 2
Lời giải
Chọn B
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình bậc hai
\({x^2} - Sx + P = 0.\)
Điều kiện để có hai số đó là \({S^2} - 4P \ge 0.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.