Câu hỏi:

03/02/2026 3 Lưu

Gọi \({x_1};\,{x_2}\) là nghiệm của phương trình \( - 2{x^2} - ax - 1 = 0.\) Giá trị của biểu thức \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}}\) bằng

A. \(6.\)                      
B. \(2.\)                    
C. \(5.\)                           
D. \(4.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Phương trình \( - 2{x^2} - 6x - 1 = 0\) có \(\Delta  = {\left( { - 6} \right)^2} - 4.\left( { - 2} \right).\left( { - 1} \right) = 28 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}\)

Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 3\\{x_1}{x_2} = \frac{1}{2}\end{array} \right.\)

Ta có \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.\left( { - 3} \right) + 9}} = 6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(6\).                     
B. \(2\).                    
C. \(5\).                          
D. \(4\).

Lời giải

Chọn A

Phương trình \[ - 2{x^2} - 6x - 1 = 0\] có \[{\rm{\Delta }} = {( - 6)^2} - 4.( - 2).( - 1) = 28 > 0\] nên phương trình có hai nghiệm \[{x_1};{x_2}\]

Theo hệ thức Viète ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}.{x_2} = \frac{c}{a}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 3\\{x_1}.{x_2} = \frac{1}{2}\end{array} \right.\]

Ta có \[N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.( - 3) + 9}} = 6\]

Câu 2

A. \({x^2} + Sx + P = 0.\)                         
B. \({x^2} - Sx + P = 0.\)              
C. \({x^2} + Sx - P = 0.\)                             
D. \({x^2} - Sx - P = 0.\)

Lời giải

Chọn B

Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình bậc hai

\({x^2} - Sx + P = 0.\)

Điều kiện để có hai số đó là \({S^2} - 4P \ge 0.\)

Câu 3

A. \({x_1} = - 1;\,\,{x_2} = \frac{{\sqrt 2 - 1}}{{\sqrt 2 }}.\)                                                         
B. \({x_1} = 1;\,\,{x_2} = \frac{{ - \sqrt 2 - 1}}{{\sqrt 2 }}.\)
C. \({x_1} = - 1;\,\,{x_2} = \frac{{ - \sqrt 2 + 1}}{{\sqrt 2 }}.\)        
D. \({x_1} = 1;\,\,{x_2} = \frac{{\sqrt 2 + 1}}{{\sqrt 2 }}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(25{m^2} - 4.\)    
B. \(25{m^2} + 4.\)
C. \({m^2} + 4.\)                          
D. \(1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[N = \frac{1}{{{x_1} + 2}} + \frac{1}{{{x_2} + 2}} = \frac{{{x_1} + {x_2} + 4}}{{{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4}} = \frac{{ - 4 + 4}}{{ - 6 + 2.( - 4) + 4}} = 0\]. 
B. \[21\].                  
C. \[22\].                         
D. \[22\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({x^2} + 6x + 7 = 0.\)                          
B. \({x^2} - 6x + 7 = 0.\)              
C. \({x^2} - 7x + 6 = 0.\)                             
D. \({x^2} + 7x + 6 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^2} - 2x + 15 = 0.\)                         
B. \({x^2} + 2x - 15 = 0.\)             
C. \({x^2} + 2x + 15 = 0.\)                             
D. \({x^2} - 2x - 15 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP