Câu hỏi:

03/02/2026 13 Lưu

Cho đường tròn (O,R) và đường thẳng d không đi qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là tiếp điểm). Gọi H là trung điểm của AB.

a) Chứng minh rằng M, D, O, H cùng nằm trên một đường tròn

b) Đoạn OM cắt đường tròn tại I. CMR I là tâm đường tròn nội tiếp tam giác MCD.

c) Đường thẳng  qua O, vuông góc với OM cắt các tia MC, MD theo thứ tự tại P, Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho đường tròn (O,R) và đường thẳng d không đi qua O cắt đường tròn tại hai điểm A, B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là tiếp điểm). Gọi H là trung điểm của AB. (ảnh 1)

a. Do MD là tiếp tuyến của (O) => \(MD \bot OD\) =>\(\widehat {MDO} = {90^0}\)

Do H là trung điểm của  AB; dây AB không đi qua tâm O

 nên \(OH \bot AB\); =>\(\widehat {MHO} = {90^0}\)

Xét tứ giác MHOD  có \(\widehat {MDO} + \widehat {MHO} = {90^0} + {90^0} = {180^0}\)

       tứ giác MHOD nội tiếp

       M, D, O, H cùng nằm trên một đường tròn.

b. Do MC, MD là tiếp tuyến của (O)

=>MO là tia phân giác của \(\widehat {CMD}\) => MI là tia phân giác của \(\widehat {CMD}\)(*)

OI là tia phân giác của \(\widehat {COD}\)  => \(\widehat {COI} = \widehat {DOI}\)  hay  (1)

Mà  ;  (2)

Từ 1, 2 =>  \(\widehat {MCI} = \widehat {DCI}\) => CI là phân giác của \(\widehat {MCD}\) (**)

Từ (*), (**) => I là tâm đường tròn nội tiếp tam giác MCD

c. Ta có \({S_{MPQ}} = \frac{1}{2}MO.PQ = \frac{1}{2}.MO.2.OP = MO.OP\)

Mà  \(\Delta MCO \sim \Delta MOP(g.g)\)

\( =  > \frac{{MO}}{{MP}} = \frac{{CO}}{{OP}} =  > MO.OP = MP.CO\)

\( =  > {S_{MPQ}} = MP.CO = (MC + CP).CO \ge 2\sqrt {MC.CP} .CO = 2O{C^2} = 2{R^2}\)

Dấu “ =” xảy ra khi MC = CP \( \Leftrightarrow \Delta MOP\)  vuông cân

\( \Leftrightarrow \widehat {PMO} = {45^0}\) \( \Leftrightarrow \widehat {CMD} = {90^0}\)

ó MCOD là hình vuông cạnh R <=>  OM = R\(\sqrt 2 \) .Vậy diện tích tam giác MPQ bé nhất khi OM = R\(\sqrt 2 \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) và đường cao \(AH\) gọi \( (ảnh 1)

Để chứng minh \(AMEN\) là tứ giác nội tiếp ta sẽ

chứng minh: \(\widehat {MAN} + \widehat {MEN} = {180^0}\). 

Ta cần tìm sự liên hệ của các góc \(\widehat {MAN};\widehat {MEN}\) với các  góc có sẵn của những tứ giác nội tiếp khác.

Ta có \(\widehat {MEN} = {360^0} - \left( {\widehat {MEH} + \widehat {NEH}} \right) = {360^0} - \left( {{{180}^0} - \widehat {ABC} + {{180}^0} - \widehat {ACB}} \right) = \widehat {ABC} + \widehat {ACB}\) \( = {180^0} - \widehat {BAC}\) suy ra \(\widehat {MEN} + \widehat {MAN} = {180^0}\). Hay tứ giác \(AMEN\) là tứ giác nội tiếp.

Kẻ \(MK \bot BC\), giả sử \(HE\) cắt \(MN\) tại \(I\) thì \(IH\) là cát tuyến của hai đường tròn \((BMH)\), \((CNH)\).

Lại có \(MB = MH = MA\) (Tính chất trung tuyến tam giác vuông).

Suy ra tam giác \(MBH\) cân tại \(M \Rightarrow KB = KH \Rightarrow MK\) luôn đi qua tâm đường tròn ngoại tiếp tam giác \(MBH\). Hay \(MN\) là tiếp tuyến của \((MBH)\) suy ra \(I{M^2} = IE.IH\), tương tự ta cũng có \(MN\) là tiếp tuyến của \(\left( {HNC} \right)\) suy ra \(I{N^2} = IE.IH\) do đó \(IM = IN\).

Lời giải

Cho tam giác \(ABC\) có 3 góc nhọ (ảnh 1)

a). Giả sử các đường cao của tam giác là \(AK,CI\) . Để chứng minh \(AHCP\) là tứ giác nội tiếp ta sẽ chứng minh \(\widehat {AHC} + \widehat {APC} = {180^0}\).

Ta có:

     \(\widehat {AHC} = \widehat {IHK}\) ( đối đỉnh)

     \(\widehat {APC} = \widehat {AMC} = \widehat {ABC}\) ( do tính đối xứng và góc nội tiếp cùng chắn một cung).

Như vậy ta chỉ cần chứng minh \(\widehat {ABC} + \widehat {IHK} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(BIHK\)là tứ giác nội tiếp.

b). Để chứng minh \(N,H,P\) thẳng hàng ta sẽ chứng minh \(\widehat {NHA} + \widehat {AHP} = {180^0}\) do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.

Thật vậy ta có: \(\widehat {AHP} = \widehat {ACP}\) (tính chất góc nội tiếp), \(\widehat {ACP} = \widehat {ACM}\)  (1) (Tính chất đối xứng) .

Ta thấy vai trò tứ giác \(AHCP\) giống với \(AHBN\) nên ta cũng dễ chứng minh được \(AHBN\) là tứ giác nội tiếp từ đó suy ra \(\widehat {AHN} = \widehat {ABN}\) , mặt khác \(\widehat {ABN} = \widehat {ABM}\) (2) (Tính chất đối xứng) .

Từ (1), (2) ta suy ra chỉ cần chứng minh \(\widehat {ABM} + \widehat {ACM} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(ABMC\) nội tiếp.

Vậy \(\widehat {NHA} + \widehat {AHP} = {180^0}\) hay \(N,H,P\) thẳng hàng.