Câu hỏi:

03/02/2026 12 Lưu

a) Tính số đường chéo của đa giác \[n\] cạnh.

b) Đa giác nào có số đường chéo bằng số cạnh?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\). (ảnh 1)

Trường hợp 1: D nằm trên cung lớn .

Ta có \(\widehat {{\rm{SCM}}} = \widehat {{\rm{SDM}}}\) (1) góc nội tiếp cùng chắn cung  của đường tròn đường kính \(MC\)).

Dễ thấy MDC^=90° (MC là đường kính). Tương tự  BAC^=90° (gt).

\( \Rightarrow \) Bốn điểm \(B,A,D,C\) cùng nằm trên một đường tròn đường kính \(BC\).

\( \Rightarrow \widehat {SDM} = \widehat {ACB}\) (2) (góc nội tiếp cùng chắn cung  ).

Từ (1) và (2) \( \Rightarrow \widehat {SCM} = \widehat {MCB}\) hay \(CA\) là tia phân giác của góc\(SCB\).

Trường hợp 2: D nằm trên cung nhỏ  và Trường hợp \(3:{\rm{D}}\) trùng với S. (Học sinh tự giải).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP