Câu hỏi:

03/02/2026 7 Lưu

Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của một hình lục giác đều đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của một hình lục giác đều đã cho. (ảnh 1)

Ta có tam giác \(AOB\)vuông tại \(O\). Theo định lí Pythagore, ta có: \(O{A^2} + O{B^2} = A{B^2}\)

hay \({R^2} + {R^2} = 9\)\( \Leftrightarrow 2{{\rm{R}}^2} = 9 \Leftrightarrow {{\rm{R}}^2} = \frac{9}{2} \Rightarrow {\rm{R}} = \sqrt {\frac{9}{2}}  = \frac{{3\sqrt 2 }}{2}(\;{\rm{cm}})\)

Ta có cạnh của hình lục giác đều bằng bán kính đường tròn ngoại tiếp.

Gọi \(P\) là chu vi của hình lục giác đều, \(P = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 (\;{\rm{cm}})\)

Xét tam giác đều \(KOI\) cạnh \(R = \frac{{3\sqrt 2 }}{2}\) nên đường cao \(ON = OK.\sin \widehat {OKN} = \frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2}\).

Do đó diện tích tam giác \(KOI = \frac{1}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} = \frac{{18\sqrt 3 }}{8}\left( {\;c{m^2}} \right)\)

Tích tam hình lục giác đều là: \(S = 6.\frac{{18\sqrt 3 }}{8} = \frac{{27\sqrt 3 }}{2}\left( {\;c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP