Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của một hình lục giác đều đã cho.
Câu hỏi trong đề: 15 bài tập Toán 9 Cánh diều Ôn tập chương 8 có đáp án !!
Quảng cáo
Trả lời:

Ta có tam giác \(AOB\)vuông tại \(O\). Theo định lí Pythagore, ta có: \(O{A^2} + O{B^2} = A{B^2}\)
hay \({R^2} + {R^2} = 9\)\( \Leftrightarrow 2{{\rm{R}}^2} = 9 \Leftrightarrow {{\rm{R}}^2} = \frac{9}{2} \Rightarrow {\rm{R}} = \sqrt {\frac{9}{2}} = \frac{{3\sqrt 2 }}{2}(\;{\rm{cm}})\)
Ta có cạnh của hình lục giác đều bằng bán kính đường tròn ngoại tiếp.
Gọi \(P\) là chu vi của hình lục giác đều, \(P = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 (\;{\rm{cm}})\)
Xét tam giác đều \(KOI\) cạnh \(R = \frac{{3\sqrt 2 }}{2}\) nên đường cao \(ON = OK.\sin \widehat {OKN} = \frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2}\).
Do đó diện tích tam giác \(KOI = \frac{1}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} = \frac{{18\sqrt 3 }}{8}\left( {\;c{m^2}} \right)\)
Tích tam hình lục giác đều là: \(S = 6.\frac{{18\sqrt 3 }}{8} = \frac{{27\sqrt 3 }}{2}\left( {\;c{m^2}} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Dễ thấy (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại
Lại có tam giác \(AHB\) vuông tại \(H\) (gt)
Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).
Lời giải
a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.
Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].
b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

