Câu hỏi:

03/02/2026 11 Lưu

Cho ngũ giác \(ABCDE\) có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C = 108^\circ \). Ngũ giác \(ABCDE\) có phải là ngũ giác đều không ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho ngũ giác \(ABCDE\) có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C = 108^\circ \). Ngũ giác \(ABCDE\) có phải là ngũ giác đều không ? (ảnh 1)

Ta có : \(AB = BC = CD = DE = EA\,\,\left( {gt} \right)\,\,\left( * \right)\)

Xét tam giác \(ABE\) có \(AB = AE\,\,\) (gt)

Nên \(\Delta ABE\) cân tại A có \(\widehat A = 108^\circ \)

\( \Rightarrow {\widehat B_1} = {\widehat E_1} = \frac{{180^\circ  - \widehat A}}{2} = \frac{{180^\circ  - 108^\circ }}{2} = 36^\circ \)

Tương tự với tam giác \(BCD\), ta có : \({\widehat B_3} = {\widehat D_1} = 36^\circ \)

Lại có \(\widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3} = 108^\circ \)

\( \Rightarrow {\widehat B_2} = 108^\circ  - \left( {{{\widehat B}_1} + {{\widehat B}_3}} \right) = 108^\circ  - \left( {36^\circ  + 36^\circ } \right) = 36^\circ \)

Dễ thấy \(\Delta ABE = \Delta CBD\,\,\left( {c.g.c} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP