Câu hỏi:

03/02/2026 6 Lưu

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( O \right)\) như hình vẽ sau. Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\). Chứng minh rằng là một lục giác đều.
Phép quay ngược chiều \(60^\circ \) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\)\( \Rightarrow \) các tam giác \(AOD,\,DOB,\,BOE,\,EOC,\,COF\) là các tam giác đều

\( \Rightarrow \)\(AD = DB = BE = EC = CF\)và \(\widehat {ADB} = \widehat {DBE} = \widehat {BEC} = \widehat {ECF} = \widehat {CFA} = \widehat {FAD} = 120^\circ \)

Do đó \(ADBECF\) là một lục giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP