Câu hỏi:

03/02/2026 7 Lưu

Tính diện tích hình hoa thị 6 cánh tạo bởi 6 cung tròn có bán kính 2 cm và tâm là các đỉnh của lục giác đều nội tiếp đường tròn bán kính 2 cm (làm tròn đến chữ số thập phân thứ nhất).
Câu 14:	Tính diện tích hình hoa thị 6 cánh tạo bởi 6 cung tròn có bán kính 2 cm và tâm là các đỉnh của lục giác đều nội tiếp đường tròn bán kính 2 cm (làm tròn đến chữ số thập phân thứ nhất). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\widehat {AOB} = 360^\circ :6 = 60^\circ \)

Diện tích hình quạt \(OAB\) là \(\frac{{\pi .R.n}}{{180}} = \frac{{\pi .2.60}}{{180}} = \frac{{2\pi }}{3}\left( {\;c{m^2}} \right)\).

Diện tích tam giác đều \(OAB\) là \(\frac{{{2^2}\sqrt 3 }}{4} = \sqrt 3 \left( {\;c{m^2}} \right)\).

Diện tích hình viên phân là \(\frac{{2\pi }}{3} - \sqrt 3 \left( {\;c{m^2}} \right)\). Diện tích một cánh hoa là \(\left( {\frac{{2\pi }}{3} - \sqrt 3 } \right).2\left( {\;c{m^2}} \right)\).

Diện tích một bông hoa là \(\left( {\frac{{2\pi }}{3} - \sqrt 3 } \right).2.6 \approx 4,3\left( {\;c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP