Cho các điểm \[A\left( {1; - 2;0} \right);\,B\left( {2; - 1;1} \right);\,C\left( {1;1;2} \right)\].
Cho các điểm \[A\left( {1; - 2;0} \right);\,B\left( {2; - 1;1} \right);\,C\left( {1;1;2} \right)\].
a) Phương trình mặt phẳng \[\left( {ABC} \right)\] là \[x + 2y - 3z - 3 = 0\].
b) Phương trình mặt phẳng \[\left( \alpha \right)\] qua \[A\] và vuông góc với \[BC\] là \[x - 2y - z - 5 = 0\].
c) Phương trình mặt phẳng trung trực \[\left( \beta \right)\] của đoạn \[AC\] là \[6y + 4z - 1 = 0\].
Quảng cáo
Trả lời:
|
a) |
b) |
c) |
d) |
|
SAI |
ĐÚNG |
ĐÚNG |
SAI |
a) Ta có \[\overrightarrow {AB} = \left( {1;1;1} \right);\,\overrightarrow {AC} = \left( {0;3;2} \right)\]
Vectơ pháp tuyến của \[\left( {ABC} \right)\] là \[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1; - 2;3} \right)\].
PT mặt phẳng \[\left( {ABC} \right)\] là: \[ - 1\left( {x - 1} \right) - 2\left( {y + 2} \right) + 3z = 0\] hay \[x + 2y - 3z + 3 = 0\]
b) Vectơ pháp tuyến của \[\left( \alpha \right)\] là \[\overrightarrow n = \,\overrightarrow {BC} = \left( { - 1;2;1} \right)\].
PT mặt phẳng \[\left( \alpha \right)\] là: \[ - 1\left( {x - 1} \right) + 2\left( {y + 2} \right) + 1z = 0\] hay \[x - 2y - z - 5 = 0\]
c) Ta có trung điểm của đoạn \[AC\] là \[M\left( {1;\frac{{ - 1}}{2};1} \right)\]
Vectơ pháp tuyến của \[\left( \beta \right)\] là \[\overrightarrow n = \,\overrightarrow {AC} = \left( {0;3;2} \right)\].
PT mặt phẳng \[\left( \beta \right)\] là: \[0\left( {x - 1} \right) + 3\left( {y + \frac{1}{2}} \right) + 2\left( {z - 1} \right) = 0\] hay \[6y + 4z - 1 = 0\]
d) Ta có \[\overrightarrow i = \left( {1;0;0} \right);\,\overrightarrow {OC} = \left( {1;1;2} \right)\]
Vectơ pháp tuyến của \[\left( \gamma \right)\] là \[\overrightarrow n = \left[ {\overrightarrow i ,\overrightarrow {OC} } \right] = \left( {0; - 2;1} \right)\].
PT mặt phẳng \[\left( {ABC} \right)\] là: \[0x - 2y + 1z = 0\] hay \[2y - z = 0\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \[\left( P \right)\] song song với \[\left( \alpha \right)\] nên \[\left( P \right)\] có phương trình: \[2x + 3y + z + m = 0\], điều kiện \[m \ne 1\].
Khi đó: \[\left( P \right)\] cắt các tia \[{\rm{O}}x\,,{\rm{O}}y\,,{\rm{O}}z\] lần lượt tại các điểm là: \[A\left( { - \frac{m}{2}\,;0\,;0} \right)\], \[B\left( {0\,; - \frac{m}{3}\,;0} \right)\], \[C\left( {0\,;0\,; - \,m} \right)\], với \[m < 0\].
Thể tích khối tứ diện \[OABC\] bằng \[6\] nên \[\frac{1}{6}OA\,.\,OB\,.\,OC = 6\]
\[ \Leftrightarrow \frac{1}{6}.\left| { - \frac{m}{2}} \right|.\left| { - \frac{m}{3}} \right|.\left| { - \,m} \right| = 6 \Leftrightarrow - \frac{{{m^3}}}{{36}} = 6\] (do \[m < 0\])
\[ \Leftrightarrow {m^3} = - \,216 \Leftrightarrow m = - \,6\] (thỏa mãn).
Ta có: \[\left( P \right):2x + 3y + z - 6 = 0\] \[ \Rightarrow d\left( {O;\left( P \right)} \right) = \frac{{\,\left| {\,2.0 + 3.0 + 0 - 6\,} \right|\,}}{{\sqrt {{2^2} + {3^2} + {1^2}} }} = \frac{6}{{\sqrt {14} }} \approx 1,60\].Câu 2
Lời giải
w Thay tọa độ điểm \(B\left( {4;\,2;\,1} \right)\) vào phương trình mặt phẳng \(\left( P \right)\) ta được:
\(3.4 - 2.1 + 2 = 0 \Leftrightarrow 12 = 0\) (Vô lí) \( \Rightarrow \) Điểm \(B \notin \left( P \right)\).
w Thay tọa độ điểm \(A\left( {1;\,2;\,4} \right)\) vào phương trình mặt phẳng \(\left( P \right)\) ta được:
\(3.1 - 2.4 + 2 = 0 \Leftrightarrow - 3 = 0\) (Vô lí) \( \Rightarrow \) Điểm \(A \notin \left( P \right)\).
w Thay tọa độ điểm \(D\left( {2;\,1;\,4} \right)\) vào phương trình mặt phẳng \(\left( P \right)\) ta được:
\(3.2 - 2.4 + 2 = 0 \Leftrightarrow 0 = 0\) (Thỏa mãn) \( \Rightarrow \) Điểm \(D \in \left( P \right)\).
w Thay tọa độ điểm \(C\left( {2;\,4;\, - 1} \right)\) vào phương trình mặt phẳng \(\left( P \right)\) ta được:
\(3.2 - 2.\left( { - 1} \right) + 2 = 0 \Leftrightarrow 10 = 0\) (Vô lí) \( \Rightarrow \) Điểm \(C \notin \left( P \right)\).Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.