Câu hỏi:

04/02/2026 9 Lưu

Hai hình nón bằng nhau có chiều cao bằng 2 dm được đặt như hình vẽ bên (mỗi hình đều đặt thẳng đứng với đỉnh nằm phía dưới). Lúc đầu, hình nón trên chứa đầy nước và hình nón dưới không chứa nước. Sau đó, nước được chảy xuống hình nón dưới thông qua lỗ trống ở đỉnh của hình nón trên. Hãy tính chiều cao của nước trong hình nón dưới tại thời điểm khi mà chiều cao của nước trong hình nón trên bằng 1 dm.
       Hai hình nón bằng nhau có chiều cao bằng 2 dm được đặt như hình vẽ bên (mỗi hình đều đặt thẳng đứng với đỉnh nằm phía dưới). Lúc đầu, hình nón trên chứa đầy nước và hình nón dưới không chứa nước. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

                 Hai hình nón bằng nhau có chiều cao bằng 2 dm được đặt như hình vẽ bên (mỗi hình đều đặt thẳng đứng với đỉnh nằm phía dưới). Lúc đầu, hình nón trên chứa đầy nước và hình nón dưới không chứa nước. (ảnh 2)

Gọi a là bán kính đáy hình nón;

\({V_1},{V_2}\) lần lượt là thể tích của hình nón trên lúc chứa đầy nước và khi chiều cao của nước bằng 1 dm;

h, \({V_3}\) lần lượt là chiều cao của nước, thể tích của hình nón dưới khi chiều cao của nước trong hình nón trên bằng 1 dm;

R, r lần lượt là bán kính của hình nón trên của nước, bán kính của hình nón dưới của nước khi chiều cao của nước trong hình nón trên bằng 1 dm.

Ta có: \(\frac{R}{a} = \frac{1}{2} \Rightarrow R = \frac{a}{2}\).

Thể tích nước của hình nón trên khi chiều cao bằng 1 là \({V_2} = {\textstyle{1 \over 3}}.1.\pi {\left( {{\textstyle{1 \over 2}}a} \right)^2} = \frac{{\pi {a^2}}}{{12}}.\)

Mặt khác: \(\frac{r}{a} = \frac{h}{2} \Rightarrow r = \frac{{ah}}{2}.\)

Do đó thể tích nước hình nón dưới \({V_3} = {\textstyle{1 \over 3}}.h.\pi {\left( {{\textstyle{h \over 2}}a} \right)^2} = \frac{{\pi {a^2}{h^3}}}{{12}}.\)

Thể tích nước của hình nón trên khi đầy nước \[{V_1} = {\textstyle{1 \over 3}}.2.\pi {a^2}.\]

Lại có: \({V_3} = {V_1} - {V_2} \Rightarrow \)\(\frac{{\pi {a^2}{h^3}}}{{12}} = \)\[{\textstyle{1 \over 3}}.2.\pi {a^2} - \]\(\frac{{\pi {a^2}}}{{12}}\)\( \Leftrightarrow 1 + {h^3} = 8 \Leftrightarrow h = \sqrt[3]{7}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\), cạnh \(AB = 6\), \(AC = 8\) và \(M\)là trung điểm của cạnh \(AC\). Tính thể tích của hình nón thu được do tam giác \(BMC\) quanh quanh \(AB\). (ảnh 1)

Khi tam giác \(BMC\) quanh quanh trục \(AB\)thì thể tích hình nón tạo thành là hiệu của thể tích hình nón có đường cao \(AB\), đường sinh \(BC\) và hình nón có đường cao \(AB\), đường sinh \(BM\).

Nên \(V = \frac{1}{3}AB.\pi .A{C^2} - \frac{1}{3}AB.\pi .A{M^2} = \frac{1}{4}AB.\pi .A{C^2} = 96\pi \).

Lời giải

Cho tam giác vuông \[H\] tại\(AB (ảnh 1)

a) Khi quay tam giác \[R = HC = 2\] xung quanh trục \(\Delta AHC\), ta thu được hình nón có bán kính đáy \(r = AC = a\), chiều cao \(h = AB = a\sqrt 3 \)và đường sinh là cạnh huyền \(l = BC\).

Xét tam giác \( = 2\sqrt 3 \) vuông tại \(V = \frac{1}{3}\pi {R^2}.AH\), theo pythagore, ta có:

\[\begin{array}{l}B{C^2} = A{C^2} + A{B^2} = 2{a^2}\\ \Rightarrow BC = 2a \Rightarrow l = 2a\end{array}\]

Đường sinh của hình nón \[2a\] (đvđd)

b) Thể tích hình nón là: \[V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .{a^2}.a\sqrt 3  = \frac{{{a^3}\sqrt 3 \pi }}{3}\] (đvtt)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP