Câu hỏi:

04/02/2026 5 Lưu

Một cốc thủy tinh hình trụ đựng đầy nước có chiều cao bằng 10 cm và thể tích bằng 90p cm3. Người ta thả vào cốc một viên bi sắt hình cầu có bán kính bằng bán kính đáy cốc nước, viên bi sắt ngập toàn bộ trong nước. Tính lượng nước bị tràn ra khỏi cốc?

Một cốc thủy tinh hình trụ đựng đầy nước có chiều cao bằng 10 cm và thể tích bằng 90 cm3. Người ta thả vào cốc một viên bi sắt hình cầu có bán kính bằng bán kính đáy cốc nước, viên bi sắt ngập toàn bộ trong nước. Tính lượng nước bị tràn ra khỏi cốc? (ảnh 1)              Một cốc thủy tinh hình trụ đựng đầy nước có chiều cao bằng 10 cm và thể tích bằng 90 cm3. Người ta thả vào cốc một viên bi sắt hình cầu có bán kính bằng bán kính đáy cốc nước, viên bi sắt ngập toàn bộ trong nước. Tính lượng nước bị tràn ra khỏi cốc? (ảnh 2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một cốc thủy tinh hình trụ đựng đầy nước có chiều cao bằng 10 cm và thể tích bằng 90 cm3. Người ta thả vào cốc một viên bi sắt hình cầu có bán kính bằng bán kính đáy cốc nước, viên bi sắt ngập toàn bộ trong nước. Tính lượng nước bị tràn ra khỏi cốc? (ảnh 3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một hộp đựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. (ảnh 2)

Đặt \(h,\,\,R\) lần lượt là đường cao và bán kính hình tròn đáy của hộp đựng bóng tennis.

Dễ thấy mỗi quả bóng tennis có cùng bán kính \(R\) với hình tròn đáy của hộp đựng bóng tennis và \(h = 6R\).

Do đó ta có:

Tổng thể tích của ba quả bóng là \({V_1} = 3.\frac{4}{3}\pi {R^3} = 4\pi {R^3}\);

Thể tích của hình trụ (hộp đựng bóng) là \({V_0} = \pi {R^2}h = 6\pi {R^3}\);

Thể tích phần còn trống của hộp đựng bóng là \({V_2} = {V_0} - {V_1} = 2\pi {R^3}\).

Khi đó tỉ lệ phần không gian còn trống so với hộp đựng bóng là \(\frac{{{V_2}}}{{{V_0}}} = \frac{1}{3} \approx 0,33\).

Suy ra \(a \approx 33\).

Lời giải

Thể tích hình nón là \[{V_1} = \frac{1}{3}\pi .{R^2}.2R = \frac{2}{3}\pi .{R^3}\]

Thể tích nửa hình cầu là \({V_2} = \frac{1}{2}.\frac{4}{3}\pi .{R^3} = \frac{2}{3}\pi .{R^3}\)

Thể tích của toàn bộ khối đồ vật là:

\({V_1} + {V_2} = 36\pi \)

\(\begin{array}{l}\frac{4}{3}\pi .{R^3} = 36\pi \\ \Rightarrow R = 3\end{array}\)

Diện tích xung quanh của mặt nón là \({S_1} = \pi R.\sqrt {4{R^2} + {R^2}}  = \pi {R^2}\sqrt 5  = 9\sqrt 5 \pi \)

Diện tích của nửa mặt cầu là \({S_2} = \frac{1}{2}.4\pi {R^2} = 18\pi \)

Diện tích bề mặt của toàn bộ đồ vật bằng \({S_1} + {S_2} = 9\pi \left( {\sqrt 5  + 2} \right){\rm{ }}c{m^2}\).