Để kiểm tra tính chính xác của một xét nghiệm nhằm chẩn đoán bệnh \(X\), người ta chọn một mẫu gồm \(5282\) người, trong đó có \(54\) người mắc bệnh \(X\) và \(5228\) người không mắc bệnh \(X\) để làm xét nghiệm. Trong số \(54\) người mắc bệnh \(X\) có \(48\) người cho kết quả dương tính. Trong số \(5228\) người không mắc bệnh có \(1307\) người cho kết quả dương tính. Chọn ngẫu nhiên một người trong mẫu. Tính xác suất để người đó mắc bệnh \(X\) nếu biết rằng người đó có xét nghiệm âm tính.
Câu hỏi trong đề: Đề kiểm tra Xác suất có điều kiện (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
Ta có bảng sau đây

Gọi \(A\) là biến cố “Người đó mắc bệnh \(X\)”, \(B\) là biến cố “Người đó có xét nghiệm âm tính”.
Khi đó \(A \cap B\) là biến cố “Người đó vừa mắc bệnh \(X\), vừa có xét nghiệm âm tính”.
Từ bảng trên, ta có \(P\left( {A \cap B} \right) = \frac{6}{{5282}}\); \(P\left( B \right) = \frac{{3927}}{{5282}}\).
Vậy xác suất cần tính là \[P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{6}{{3927}}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Không gian mẫu là \(\Omega = \left\{ {TTT,\;TTG,\;TGT,\;TGG,\;GTT,\;GTG,\;GGT,\;GGG} \right\}\) trong đó \(T\) ký hiệu con trai và \(G\) ký hiệu con gái.
Gọi \(A\) là biến cố “Có hai trai, một gái”. Ta có \(A = \left\{ {TTG,\;GTT,\;TGT} \right\}\).
Gọi \(B\) là biến cố “Gia đình có con gái”. Ta có \(P\left( B \right) = 1 - P\left( {\overline B } \right) = 1 - \frac{1}{8} = \frac{7}{8}\).
Có \(A \cap B = \left\{ {TTG,\;GTT,\;TGT} \right\}\) nên \(P\left( {A \cap B} \right) = \frac{3}{8}\).
Vậy \[P\left( {A\left| B \right.} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{3}{7}\].Câu 2
Lời giải
Chọn C
Gọi \(A\) là biến cố “vận động viên \(A\) chiến thắng”, ta có \(P\left( A \right) = 0,6\);
\(B\) là biến cố “vận động viên \(B\) chiến thắng” thì \(P\left( B \right) = 0,7\);
\(C\) là biến cố “vận động viên \(C\) chiến thắng” thì \(P\left( C \right) = 0,8\).
Gọi \(D\) là biến cố “đội tuyển thắng hai trận”. Ta có
\(P\left( D \right) = P\left( {AB\overline C } \right) + P\left( {A\overline B C} \right) + P\left( {\overline A BC} \right) = 0,452\).
Vậy xác suất cần tính là \[P\left( {\overline A \left| D \right.} \right) = \frac{{P\left( {\overline A D} \right)}}{{P\left( D \right)}} = \frac{{P\left( {\overline A BC} \right)}}{{P\left( D \right)}} = \frac{{0,4.0,7.0,8}}{{0,452}} = \frac{{56}}{{113}}\].Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(P\left( A \right) = \frac{5}{{10}}\).
b) \(P\left( B \right) = \frac{7}{{20}}\).
c) \[P\left( {A|B} \right) = 0,75\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.