Kết quả khảo sát tại một xã cho thấy có \(25\% \) cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là \(60\% \) và \(25\% \). Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?
Quảng cáo
Trả lời:
Giả sử ta gặp một cư dân của xã, gọi \(A\) là biến cố "Người đó có hút thuốc lá" và \(B\) là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:
Ta có \(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,15 + 0,1875 = 0,3375\).
Theo công thức Bayes, ta có \(P(A\mid B) = \frac{{P(A)P(B\mid A)}}{{P(B)}} = \frac{{0,15}}{{0,3375}} = \frac{4}{9}\).
Vậy nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là \(\frac{4}{9}\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “bóng đạt chuẩn sau khi qua kiểm tra chất lượng”
\(B\) là biến cố “sản phẩm đạt tiêu chuẩn”.
Theo bài ra ta có: \(P\left( B \right) = 0,8\); \(P\left( {\overline B } \right) = 1 - 0,8 = 0,2\)
Do tỉ lệ công nhận một bóng đèn đạt tiêu chuẩn là 0,9 nên \(P\left( {A|B} \right) = 0,9\).
Tỉ lệ loại bỏ một bóng hỏng là 0,95 nên \(P\left( {A|\overline B } \right) = 1 - 0,95 = 0,05\).
Theo công thức xác suất toàn phần ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,9 + 0,2.0,05 = 0,73\).
Lời giải
a. Gọi \(A\) là biến cố “học sinh được chọn là học sinh giỏi”
và \(B\) là biến cố “học sinh được chọn là học sinh nữ”.
Theo bài ra ta có: \(P\left( B \right) = 0,45;\begin{array}{*{20}{c}}{}\end{array}P\left( {\overline B } \right) = 1 - 0,45 = 0,55\).
Do lớp học đó có tỉ lệ học sinh giỏi là nữ là 30%, học sinh giỏi là nam chiếm 40% nên:
\(P\left( {A|B} \right) = 0,3\) và \(P\left( {A|\overline B } \right) = 0,4\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,45.0,3 + 0,55.0,4 \simeq 0,36\).
b. Gọi \(C\) là biến cố “học sinh giỏi được chọn là học sinh nữ” thì \(C = B|A\), nên, theo công thức Bayes ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,45.0,3}}{{0,355}} \simeq 0,38\).
Câu 3
B. \[0,5231\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Xác suất để lấy được bi xanh từ hộp thứ nhất là \[\frac{3}{8}\].
b) Xác suất để lấy được bi vàng từ hộp thứ nhất là \[\frac{5}{7}\].
c) Biết rằng lấy được bi màu xanh từ hộp thứ nhất. Xác suất để lấy được 2 viên bi khác màu từ hộp thứ hai là \[\frac{9}{{13}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.