Được biết có \(5\% \) đàn ông bị mù màu, và \(0,25\% \) phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chon một người bị mù màu. Xác suất để người đó là đàn ông là bao nhiêu?
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố người được chọn là đàn ông, \(B\) là biến cố người được chọn mù màu.
Theo đề bài ra ta có \(P\left( {\left. B \right|A} \right) = 0,05;P\left( {\left. B \right|\overline A } \right) = 0,0025\).
Vì số đàn ông bằng số phụ nữ nên ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5\).
Áp dụng công thức Bayes ta có xác suất để chọn được một người đàn ông mù màu là
\(P\left( {\left. A \right|B} \right) = \frac{{P\left( A \right).P\left( {\left. B \right|A} \right)}}{{P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\overline A } \right).P\left( {\left. B \right|\overline A } \right)}} = \frac{{0,5.0,05}}{{0,5.0,05 + 0,5.0,0025}} = \frac{{20}}{{21}}.\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[{K_1}\]: “Bi lấy ra từ hộp II là bi của hộp \[I\]”
\[{K_2}\]: “Bi lấy ra từ hộp \[II\] là bi của hộp \[II\]”
\[A\]: “Lấy được bi trắng”
a) Ta có : \[P\left( {{K_1}} \right)\, = \,\frac{{C_2^1}}{{C_{12}^1}}\, = \,\frac{1}{6}\]; \[P\left( {{K_2}} \right)\, = \,\frac{{C_{10}^1}}{{C_{12}^1}}\, = \,\frac{5}{6}\].
\[P\left( {A|{K_1}} \right)\, = \,\frac{{C_5^1}}{{C_{10}^1}}\, = \,\frac{1}{2}\]; \[P\left( {A|{K_2}} \right)\, = \,\frac{{C_6^1}}{{C_{10}^1}}\, = \,\frac{3}{5}\].
Áp dụng công thức xác suất toàn phần, ta có xác suất để lấy được bi trắng là:
\[P\left( A \right)\, = \,P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)\, + P\left( {{K_2}} \right).P\left( {A|{K_2}} \right)\, = \,\frac{1}{6}.\frac{1}{2}\, + \,\frac{5}{6}.\frac{3}{5} = \frac{7}{{12}} \simeq \,0,58\].
b) Áp dụng công thức Bayes, xác suất để lấy được bi trắng của hộp \[I\] là:
\[P\left( {{K_1}|A} \right)\, = \,\frac{{P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)}}{{P\left( A \right)\,}}\,\, = \,\frac{{\frac{1}{6}.\frac{1}{2}}}{{\frac{7}{{12}}}}\, = \,\frac{1}{7}\, \simeq \,0,14\].Lời giải
Gọi \(A\) là biến cố “Người đó bị nhiễm Virus”.
\(B\) là biến cố “Người đó cho kết quả dương tính”.
Xét nghiệm Covid – 19 cho kết quả dương tính với \(90\% \) các trường hợp thực sự nhiễm virus\(P\left( {B|A} \right) = 0,9\).
Xét nghiệm Covid – 19 cho kết quả âm tính với \(80\% \) các trường hợp thực sự không nhiễm virus, nên cho kết quả dương tính với \(20\% \) các trường hợp không thực sự nhiễm virus \(P\left( {B|\bar A} \right) = 0,2\)
\(P\left( A \right) = 0,01 \Rightarrow P\left( {\bar A} \right) = 0,99\)
Do đó xác suất để người đó cho kết quả dương tính là:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,01.0,9 + 0,99.0,2 = 0,207\)
Xác suất để người nhiễm virus cho kết quả dương tính là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,01.0,9}}{{0,207}} = \frac{1}{{23}}\)
Vậy \(a = 1,b = 23 \Rightarrow a + b = 24\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Xác suất để lấy được bi đánh số có màu vàng là \[0,6\].
b) Xác suất để lấy được bi không đánh số có màu đỏ là \[0,8\].
c) Xác suất để viên bi được lấy ra có đánh số là \[0,36\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(P(A) = P(A).P(A|B) + P(\overline A ).P(A|\overline B )\)
B. \(P(A) = P(B).P(A|B) + P(\overline B ).P(A|\overline B )\).
C. \(P(A) = P(A).P(\overline A |B) + P(\overline A ).P(A|\overline B )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.