Câu hỏi:

07/02/2026 15 Lưu

Một công ty du lịch bố trí chỗ nghỉ cho đoàn khách tại ba khách sạn \[A,\,B,\,C\] theo tỉ lệ \[20\]% , \[50\]% , \[30\]% . Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là \[5\]% , \[4\]% , \[8\]% . Tính xác suất để:

a) Một khách ở khách sạn \(A\), biết khách đó ở phòng điều hòa bị hỏng.

b) Một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng.

(kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

a) 0,19.

Gọi biến cố \[H\]: “Khách nghỉ ở phòng có điều hòa bị hỏng”

                   \(A\): “Khách nghỉ tại khách sạn \[A\]”

                   \(B\): “Khách nghỉ tại khách sạn \[B\]”

                   \(C\): “Khách nghỉ tại khách sạn \[C\]”

Theo bài ra ta có: \(P\left( A \right) = 0,2\); \(P\left( B \right) = 0,5\); \(P\left( C \right) = 0,3\).

                               \(P\left( {H|A} \right) = 0,05\); \(P\left( {H|B} \right) = 0,04\); \(P\left( {H|C} \right) = 0,08\)

Áp dụng công thức xác suất toàn phần, ta có:

\[P\left( H \right)\, = \,P\left( A \right).P\left( {H|A} \right)\, + \,P\left( B \right).P\left( {H|B} \right)\, + \,P\left( C \right).P\left( {H|C} \right)\,\,\]

         \[ = \,0,2.\,0,05\, + \,0,5.0,04\, + \,0,3.0,08\]

         \[ = \,0,054\].

a) Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \(A\), biết khách đó ở phòng điều hòa bị hỏng là:

\[P\left( {A|H} \right)\, = \,\frac{{P\left( A \right).P\left( {H|A} \right)}}{{P\left( H \right)}}\, = \,\frac{{0,2.0,05}}{{0,054}}\, = \,\frac{5}{{27}}\, \simeq \,0,19\].

b) Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng là:

\[P\left( {C|\overline H } \right)\, = \,\frac{{P\left( C \right).P\left( {\overline H |C} \right)}}{{P\left( {\overline H } \right)}}\, = \,\frac{{0,3.\left( {1 - \,0,08} \right)}}{{1 - 0,054}}\, = \,\frac{{138}}{{473}}\, \simeq \,0,29\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[{K_1}\]:  “Bi lấy ra từ hộp II là bi của hộp \[I\]”

\[{K_2}\]: “Bi lấy ra từ hộp \[II\] là bi của hộp \[II\]”

\[A\]: “Lấy được bi trắng”

a) Ta có : \[P\left( {{K_1}} \right)\, = \,\frac{{C_2^1}}{{C_{12}^1}}\, = \,\frac{1}{6}\];  \[P\left( {{K_2}} \right)\, = \,\frac{{C_{10}^1}}{{C_{12}^1}}\, = \,\frac{5}{6}\].

\[P\left( {A|{K_1}} \right)\, = \,\frac{{C_5^1}}{{C_{10}^1}}\, = \,\frac{1}{2}\];  \[P\left( {A|{K_2}} \right)\, = \,\frac{{C_6^1}}{{C_{10}^1}}\, = \,\frac{3}{5}\].

Áp dụng công thức xác suất toàn phần, ta có xác suất để lấy được bi trắng là:

\[P\left( A \right)\, = \,P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)\, + P\left( {{K_2}} \right).P\left( {A|{K_2}} \right)\, = \,\frac{1}{6}.\frac{1}{2}\, + \,\frac{5}{6}.\frac{3}{5} = \frac{7}{{12}} \simeq \,0,58\].

b) Áp dụng công thức Bayes, xác suất để lấy được bi trắng của hộp \[I\] là: 

\[P\left( {{K_1}|A} \right)\, = \,\frac{{P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)}}{{P\left( A \right)\,}}\,\, = \,\frac{{\frac{1}{6}.\frac{1}{2}}}{{\frac{7}{{12}}}}\, = \,\frac{1}{7}\, \simeq \,0,14\].

Lời giải

Gọi \(A\) là biến cố “Người đó bị nhiễm Virus”.

\(B\) là biến cố “Người đó cho kết quả dương tính”.

Xét nghiệm Covid – 19 cho kết quả dương tính với \(90\% \) các trường hợp thực sự nhiễm virus\(P\left( {B|A} \right) = 0,9\).

Xét nghiệm Covid – 19 cho kết quả âm tính với \(80\% \) các trường hợp thực sự không nhiễm virus, nên cho kết quả dương tính với \(20\% \) các trường hợp không thực sự nhiễm virus  \(P\left( {B|\bar A} \right) = 0,2\)

\(P\left( A \right) = 0,01 \Rightarrow P\left( {\bar A} \right) = 0,99\)

Do đó xác suất để người đó cho kết quả dương tính là:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,01.0,9 + 0,99.0,2 = 0,207\)

Xác suất để người nhiễm virus cho kết quả dương tính là:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,01.0,9}}{{0,207}} = \frac{1}{{23}}\)

Vậy \(a = 1,b = 23 \Rightarrow a + b = 24\).

Câu 4

a) Xác suất để lấy được bi đánh số có màu vàng là \[0,6\].

Đúng
Sai

b) Xác suất để lấy được bi không đánh số có màu đỏ là \[0,8\].

Đúng
Sai

c) Xác suất để viên bi được lấy ra có đánh số là \[0,36\].

Đúng
Sai
d) Xác suất để lấy viên bi màu đỏ có đánh số là \[\frac{2}{3}\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P(A) = P(A).P(A|B) + P(\overline A ).P(A|\overline B )\)                                

B. \(P(A) = P(B).P(A|B) + P(\overline B ).P(A|\overline B )\).                

C. \(P(A) = P(A).P(\overline A |B) + P(\overline A ).P(A|\overline B )\).

D. \[P(B) = P(B).P(A|B) + P(\overline B ).P(A|\overline B )\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP