Một chiếc hộp có \(20\) viên bi, trong đó có \(12\) viên bi màu đỏ và \(8\) viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Minh lấy \(1\) viên bi từ hộp sau đó bạn Châu lấy viên bi thứ hai. Tính xác suất để bạn Châu lấy được viên bi màu đỏ.
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 6 (có lời giải) !!
Quảng cáo
Trả lời:
Xét hai biến cố : \(A:\) “ Bạn Châu lấy được viên bi màu đỏ”
\(B:\) “ Bạn Minh lấy được viên bi màu đỏ”
Khi đó ta có:
Áp dụng công thức xác suất toàn phần, ta có:
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Xác suất học sinh được chọn là học sinh giỏi bằng \(0,5\).
b) Xác suất học sinh được chọn là học sinh nữ bằng \(0,6\).
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng \(0,625\).
Lời giải
Xét hai biến số sau:
\(A\): “Học sinh được chọn là học sinh giỏi”.
\(B\): “ Học sinh được chọn là học sinh nữ”.
a) Đ Xác suất học sinh được chọn là học sinh giỏi: \(P\left( A \right) = \frac{{20}}{{40}} = 0,5\).
b) s Xác suất học sinh được chọn là học sinh nữ: \(P\left( B \right) = \frac{{25}}{{40}} = 0,625 \ne 0,6\).
c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:
\(P\left( {AB} \right) = \frac{{12}}{{40}} = 0,3 \ne 0,625\).
d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:
\[P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( B \right)}} = \frac{{12}}{{25}} = 0,48\]Lời giải
Gọi \(A\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc nhạc nhẹ”.
\(B\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc dân gian”.
Ta có: \(P\left( A \right) = \frac{{17}}{{20}}\); \(P\left( B \right) = \frac{{15}}{{20}}\); \(P\left( {\overline A \overline B } \right) = \frac{2}{{20}}\).
Do đó: \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - \frac{2}{{20}} = \frac{{18}}{{20}}\).
\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{17}}{{20}} + \frac{{15}}{{20}} - \frac{{18}}{{20}} = \frac{{14}}{{20}}\).
Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{14}}{{15}} \approx 0,93\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.