Câu hỏi:

09/02/2026 22 Lưu

Có hai chiếc hộp đựng bóng. Hộp I có \(7\) quả bóng trắng và \(8\) quả bóng xanh. Hộp II có \(5\) quả bóng trắng và \(3\) quả bóng xanh. Trước tiên, từ hộp I lấy ra ngẫu nhiên \(1\) quả bóng rồi cho vào hộp II. Sau đó, từ hộp II lấy ra ngẫu nhiên \(1\) quả bóng. Xác suất để quả bóng được lấy ra màu trắng là

A. \(\frac{{11}}{{18}}\).      
B. \(\frac{{61}}{{128}}\).    
C. \(\frac{{83}}{{135}}\).            
D. \(\frac{{82}}{{135}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: “Lấy được quả bóng trắng từ hộp I”.

Gọi \(B\) là biến cố: “Lấy được quả bóng trắng từ hộp II”.

Theo công thức xác suất toàn phần \(P\left( B \right) = P\left( A \right).P\left( {B\left| A \right.} \right) + P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right)\)

Ta có \(P\left( A \right) = \frac{7}{{15}}\); \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{7}{{15}} = \frac{8}{{15}}\).

Nếu \(A\) xảy ra thì hộp II có \(6\) quả bóng trắng và \(3\) quả bóng xanh. Vậy \(P\left( {B\left| A \right.} \right) = \frac{6}{9} = \frac{2}{3}\).

Nếu \(A\) không xảy ra thì hộp II có \(5\) quả bóng trắng và \(4\) quả bóng xanh. Vậy \(P\left( {B\left| {\overline A } \right.} \right) = \frac{5}{9}\).

Vậy \(P\left( B \right) = \frac{7}{{15}}.\frac{2}{3} + \frac{8}{{15}}.\frac{5}{9} = \frac{{82}}{{135}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Xác suất học sinh được chọn là học sinh giỏi bằng \(0,5\).

Đúng
Sai

b) Xác suất học sinh được chọn là học sinh nữ bằng \(0,6\).

Đúng
Sai

c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng \(0,625\).

Đúng
Sai
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng \(0,48\).
Đúng
Sai

Lời giải

Xét hai biến số sau:

\(A\): “Học sinh được chọn là học sinh giỏi”.

\(B\): “ Học sinh được chọn là học sinh nữ”.

a) Đ Xác suất học sinh được chọn là học sinh giỏi: \(P\left( A \right) = \frac{{20}}{{40}} = 0,5\).

b) s Xác suất học sinh được chọn là học sinh nữ: \(P\left( B \right) = \frac{{25}}{{40}} = 0,625 \ne 0,6\).

c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:

\(P\left( {AB} \right) = \frac{{12}}{{40}} = 0,3 \ne 0,625\).

d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:

\[P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( B \right)}} = \frac{{12}}{{25}} = 0,48\]

Lời giải

Gọi \(A\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc nhạc nhẹ”.

\(B\) là biến cố: “Người đó đạt bài thi theo phong cách âm nhạc dân gian”.

Ta có: \(P\left( A \right) = \frac{{17}}{{20}}\); \(P\left( B \right) = \frac{{15}}{{20}}\); \(P\left( {\overline A \overline B } \right) = \frac{2}{{20}}\).

Do đó: \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - \frac{2}{{20}} = \frac{{18}}{{20}}\).

\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{17}}{{20}} + \frac{{15}}{{20}} - \frac{{18}}{{20}} = \frac{{14}}{{20}}\).

Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{14}}{{15}} \approx 0,93\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP