Câu hỏi:

11/02/2026 5 Lưu

Nếu một khoản tiền gốc \(P\) được gửi ngân hàng với lăi suất hằng năm \(r\), được tính lãi \(n\) lần trong một năm, thỉ tồng số tiền \(A\) nhận được sau \(N\) kì gửi cho bởi công thức sau \(A = P{\left( {1 + \frac{r}{n}} \right)^N}\). Bác An gửi tiết kiệm theo kì hạn một năm với lãi suất không đổi là \(7.2\% \) một năm thì sau \(5\) năm bác thu được số tiền là \(141.570.878\) đồng. Số tiền ban đầu bác An đã gửi là?.

A. \(100.000.000\).     
B. \(120.000.000\).     
C. \(110.000.000\).     
D. \(90.000.000\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Gọi \(P\) là số tiền gửi ban đầu thì \(n = 1;N = 5;r = 0,072\) ta có \[141.570.878 = P.{\left( {1 + 0,072} \right)^5} \Rightarrow P = \frac{{141.570.878}}{{{{\left( {1 + 0,072} \right)}^5}}} = 99999999,7\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[P = xy\].                   
B. \[P = \frac{x}{y}\]. 
C. \[P = \sqrt[4]{{xy}}\].                                       
D. \(P = \sqrt[4]{{\frac{x}{y}}}\).

Lời giải

Chọn A

\(P = \frac{{{x^{\frac{5}{4}}}y + {y^{\frac{5}{4}}}x}}{{\sqrt[4]{x} + \sqrt[4]{y}}} = \frac{{xy\left( {\sqrt[4]{x} + \sqrt[4]{y}} \right)}}{{\sqrt[4]{x} + \sqrt[4]{y}}} = xy\).

Lời giải

Ta có \(39.000.000.000 = 3,{9.10^{10}};500000 = {5.10^5}\).

Số tờ tiền mệnh giá \(500000\)VND mà ông An nhận được \(\frac{{3,{{9.10}^{10}}}}{{{{5.10}^5}}} = 7,{8.10^4}\) tờ.

Một tờ tiền mệnh giá \(500000\)VND nặng \[{10^{ - 3}}kg\] nên \(7,{8.10^4} \times {10^{ - 3}} = 78kg\).

Vậy ông An nhận được \(78kg\) tiền.

Câu 3

A. \(Q = {b^{\frac{9}{2}}}\).           
B. \(Q = {b^3}\).        
C. \(Q = {b^{\frac{7}{4}}}\). 
D. \(Q = {b^4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[ - 10\].      
B. \(10\).         
C. \( - \frac{1}{{10}}\).        
D. \(\frac{1}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt[3]{{\sqrt {ab} }} = \sqrt[6]{{ab}}\).         
B. \(\sqrt[4]{{ab}} = \sqrt[4]{a}.\sqrt[4]{b}\).       
C. \(\sqrt[3]{{ab}} = {\left( {ab} \right)^{\frac{1}{3}}}\).            
D. \(\sqrt[{10}]{{{{\left( {ab} \right)}^{10}}}} = ab\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP